<< Chapter < Page | Chapter >> Page > |
So it turns out that – well, so what you want to do is to estimate the distribution on the state given all the previous observations, right? So given observations, you know, one, two, three, four, and five, where is the helicopter currently? So it turns out that the random variables, S zero, S one, up to ST and Y1 are to ST, have a joint Gaussian distribution, right? So one thing you could do is construct a joint Gaussian distribution – can define vector value random variable Z, S zero, S one, up to ST, Y1 up to YT, right? So it turns out that Z will have some Gaussian distribution with some mean and some covariance matrix. Using the Gaussian marginalization and conditioning formulas. But I think way back when we talked about factor analysis in this class, we talked about how to compute marginal distributions and conditional distributions of Gaussians. But using those formulas you can actually compute this thing. You can compute, right? You can compute that conditional distribution. This will give a good estimate of the current state ST. Okay?
But clearly this is a extremely computationally inefficient way to do so because these means and covariance matrixes will grow linearly with the number of time steps as you’re tracking a helicopter over tens of thousands of time steps. They were huge covariance matrixes, so this is a conceptually correct way, but just a computational not reasonable way to perform this computation. So, instead, there’s an algorithm called the Kalman filter that allows you to organize your computations efficiently and do this. Just on the side, if you remember Dan’s discussion section on HMM’s the Kalman filter model turns out to actually be a hidden Markov model. These Kalman’s are only for those of you that attended Dan’s discussion section. If not then what I’m about to say may not make sense. But if you remember Dan’s kind of section of the hidden Markov model, it actually turns out that the Kalman filter model, this linear dynamical system with observations is actually an HMM problem where – let’s see. Unfortunately, the notation’s a bit different because Dan was drawing from, sort of, a clash of multiple research communities using these same ideas. So the notation that Dan used, I think, was developed in a different community that clashes a bit with the reinforcement learning community notations. So in Dan’s notation in the HMM section, Z and X were used to denote the state and the observations. Today, I’m using S and X to denote the state and the observations. Okay?
But it turns out what I’m about to do turns out to be a hidden Markov model with continuous states rather than discrete states, which is under the discretion section. Okay. If you didn’t attend that discussion section then forget everything I just said in the last minute. So here’s the outline of the Kalman filter. It turns out that, so it’s a cursive algorithm. So it turns out that if I have computed P of ST given Y1 up to YT, the Kalman filter organizes these computations into steps. The first step is called the predict step. Where given P of ST – where you all ready have P of ST given Y1 up to YT and you compute what P of ST plus one given Y1 up to YT is. And then the other step is called the update step. Where given this second line you compute this third line. Okay? Where having taken account only observations of the time T you know incorporate the lots of the observations up to time T plus one.
Notification Switch
Would you like to follow the 'Machine learning' conversation and receive update notifications?