<< Chapter < Page Chapter >> Page >

Student: [Inaudible]

Instructor (Andrew Ng) :In this sample? Yes, yeah, right, yeah. So I’m going to – let’s pick some kind of horizon T. So I’m going to run through my entire trajectory in my simulator, so I end up with a new nominal trajectory to linearize around, right? Okay? Yeah?

Student: So does this method give you, like, a Gaussian for performing, like, a certain action? Like you talked about, like, the 90-degree turn thing or something.

Instructor (Andrew Ng) :Right.

Student: So is this from one, like, is this from one, like, one 90-degree turn or can you [inaudible]?

Instructor (Andrew Ng) :Yeah. So it turns out what – so this is used clear – let’s see. Go and think about this as if there’s a specific trajectory that you want to follow. I’m just gonna, car or helicopter or it could be in a chemical plant, right? If there’s some specific sequence of states you expect the system to go through over time, so that you actually want to linearize at different times – excuse me. So, therefore, the different times you want different linear approximations, your dynamics, right? So I actually start to laugh over stationary simulator, right? I mean, this function F, it may be the same function F for all time steps, but the point of DDP is that I may want to use different linearizations for different time steps. So a lot of the inner loop of the algorithm is just coming up with better and better places around to linearize. Where at different times I’ll linearize around different points. Does that make sense? Cool. Okay, cool. So that was DDP.

And I’ll show examples of DDP results in the next lecture. So the last thing I wanted to do was talk about Kalman filters and LQG control, linear-quadratic Gaussian control. And what I want to do is actually talk about a different type of MDP problem where we don’t get to observe the state explicitly, right? So far in every one I’ve been talking about, I’ve been assuming that every time step you know what the state of the system is, so you can compute a policy to some function of the state is in. If you’ve all ready had that, you know, the action we take is LT times ST, right? So to compute the action you need to know what the state is.

What I want to do now is talk about the different type of problem where you don’t get to observe the state explicitly. The fact – before we even talk about the control let me just talk about the different problem where – just forget about control for now and just look at some dynamical systems where you may not get to observe the state explicitly and then only later we’ll tie this back to controlling some systems. Okay? As a concrete example, let’s say as, sort of, just an example to think about, imagine using a radar to track the helicopter, right? So we may model a helicopter, and this will be an amazingly simplified model of a helicopter, as, you know, some linear dynamical systems. So [inaudible] ST plus one equals AST plus WT, and we’ll forget about controls for now, okay? We’ll fill the controls back in. And just with this example, I’m gonna use an extremely simplified state, right? Where my state is just a position in velocity in the X and Y directions, so you may choose an A matrix like this as a – okay?

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?

Ask