<< Chapter < Page Chapter >> Page >
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses how to add and subtract mixed numbers. By the end of the module students should be able to add and subtract mixed numbers.

Section overview

  • The Method of Converting to Improper Fractions

To add or subtract mixed numbers, convert each mixed number to an improper fraction, then add or subtract the resulting improper fractions.

Sample set a

Find the following sums and differences.

8 3 5 + 5 1 4 size 12{8 { {3} over {5} } +5 { {1} over {4} } } {} . Convert each mixed number to an improper fraction.

8 3 5 = 5 8 + 3 5 = 40 + 3 5 = 43 5 size 12{8 { {3} over {5} } = { {5 cdot 8+3} over {5} } = { {"40"+3} over {5} } = { {"43"} over {5} } } {}

5 1 4 = 4 5 + 1 4 = 20 + 1 4 = 21 4 size 12{5 { {1} over {4} } = { {4 cdot 5+1} over {4} } = { {"20"+1} over {4} } = { {"21"} over {4} } } {} Now add the improper fractions 43 5 and 21 4 size 12{ { {"43"} over {5} } " and " { {"21"} over {4} } } {} .

43 5 + 21 4 The LCD = 20.

43 5 + 21 4 = 43 4 20 + 21 5 20 = 172 20 + 105 20 = 172 + 105 20 = 277 20 Convert this improper fraction to a mixed number. = 13 17 20

Thus, 8 3 5 + 5 1 4 = 13 17 20 size 12{8 { {3} over {5} } +5 { {1} over {4} } ="13" { {"17"} over {"20"} } } {} .

3 1 8 5 6 size 12{3 { {1} over {8} } - { {5} over {6} } } {} . Convert the mixed number to an improper fraction.

3 1 8 = 3 8 + 1 8 = 24 + 1 8 = 25 8 size 12{3 { {1} over {8} } = { {3 cdot 8+1} over {8} } = { {"24"+1} over {8} } = { {"25"} over {8} } } {}

25 8 5 6 size 12{ { {"25"} over {8} } - { {5} over {6} } } {} The LCD = 24.

25 8 5 6 = 25 3 24 5 4 24 = 75 24 20 24 = 75 20 24 = 55 24 Convert his improper fraction to a mixed number. = 2 7 24

Thus, 3 1 8 5 6 = 2 7 24 size 12{3 { {1} over {8} } - { {5} over {6} } =2 { {7} over {"24"} } } {} .

Practice set a

Find the following sums and differences.

1 5 9 + 3 2 9 size 12{1 { {5} over {9} } +3 { {2} over {9} } } {}

4 7 9 size 12{4 { {7} over {9} } } {}

10 3 4 2 1 2 size 12{"10" { {3} over {4} } - 2 { {1} over {2} } } {}

8 1 4 size 12{8 { {1} over {4} } } {}

2 7 8 + 5 1 4 size 12{2 { {7} over {8} } +5 { {1} over {4} } } {}

8 1 8 size 12{8 { {1} over {8} } } {}

8 3 5 3 10 size 12{8 { {3} over {5} } - { {3} over {"10"} } } {}

8 3 10 size 12{8 { {3} over {"10"} } } {}

16 + 2 9 16 size 12{"16"+2 { {9} over {"16"} } } {}

18 9 16 size 12{"18" { {9} over {"16"} } } {}

Exercises

For the following problems, perform each indicated opera­tion.

3 1 8 + 4 3 8 size 12{3 { {1} over {8} } +4 { {3} over {8} } } {}

7 1 2 size 12{7 { {1} over {2} } } {}

5 1 3 + 6 1 3 size 12{5 { {1} over {3} } +6 { {1} over {3} } } {}

10 5 12 + 2 1 12 size 12{"10" { {5} over {"12"} } +2 { {1} over {"12"} } } {}

12 1 2 size 12{"12" { {1} over {2} } } {}

15 1 5 11 3 5 size 12{"15" { {1} over {5} } -"11" { {3} over {5} } } {}

9 3 11 + 12 3 11 size 12{9 { {3} over {"11"} } +"12" { {3} over {"11"} } } {}

21 6 11 size 12{"21" { {6} over {"11"} } } {}

1 1 6 + 3 2 6 + 8 1 6 size 12{1 { {1} over {6} } +3 { {2} over {6} } +8 { {1} over {6} } } {}

5 3 8 + 1 1 8 2 5 8 size 12{5 { {3} over {8} } +1 { {1} over {8} } -2 { {5} over {8} } } {}

3 7 8 size 12{3 { {7} over {8} } } {}

3 5 + 5 1 5 size 12{ { {3} over {5} } +5 { {1} over {5} } } {}

2 2 9 5 9 size 12{2 { {2} over {9} } - { {5} over {9} } } {}

1 2 3 size 12{1 { {2} over {3} } } {}

6 + 11 2 3 size 12{6+"11" { {2} over {3} } } {}

17 8 3 14 size 12{"17"-8 { {3} over {"14"} } } {}

8 11 14 size 12{8 { {"11"} over {"14"} } } {}

5 1 3 + 2 1 4 size 12{5 { {1} over {3} } +2 { {1} over {4} } } {}

6 2 7 1 1 3 size 12{6 { {2} over {7} } -1 { {1} over {3} } } {}

4 20 21 size 12{4 { {"20"} over {"21"} } } {}

8 2 5 + 4 1 10 size 12{8 { {2} over {5} } +4 { {1} over {"10"} } } {}

1 1 3 + 12 3 8 size 12{1 { {1} over {3} } +"12" { {3} over {8} } } {}

13 17 24 size 12{"13" { {"17"} over {"24"} } } {}

3 1 4 + 1 1 3 2 1 2 size 12{3 { {1} over {4} } +1 { {1} over {3} } -2 { {1} over {2} } } {}

4 3 4 3 5 6 + 1 2 3 size 12{4 { {3} over {4} } -3 { {5} over {6} } +1 { {2} over {3} } } {}

2 7 12 size 12{"2" { {7} over {12} } } {}

3 1 12 + 4 1 3 + 1 1 4 size 12{3 { {1} over {"12"} } +4 { {1} over {3} } +1 { {1} over {4} } } {}

5 1 15 + 8 3 10 5 4 5 size 12{5 { {1} over {"15"} } +8 { {3} over {"10"} } -5 { {4} over {5} } } {}

7 17 30 size 12{7 { {"17"} over {"30"} } } {}

7 1 3 + 8 5 6 2 1 4 size 12{7 { {1} over {3} } +8 { {5} over {6} } -2 { {1} over {4} } } {}

19 20 21 + 42 6 7 5 14 + 12 1 7 size 12{"19" { {"20"} over {"21"} } +"42" { {6} over {7} } - { {5} over {"14"} } +"12" { {1} over {7} } } {}

74 25 42 size 12{"74" { {"25"} over {"42"} } } {}

1 16 + 4 3 4 + 10 3 8 9 size 12{ { {1} over {"16"} } +4 { {3} over {4} } +"10" { {3} over {8} } -9} {}

11 2 9 + 10 1 3 2 3 5 1 6 + 6 1 18 size 12{"11"- { {2} over {9} } +"10" { {1} over {3} } - { {2} over {3} } -5 { {1} over {6} } +6 { {1} over {"18"} } } {}

21 1 3 size 12{"21" { {1} over {3} } } {}

5 2 + 2 1 6 + 11 1 3 11 6 size 12{ { {5} over {2} } +2 { {1} over {6} } +"11" { {1} over {3} } - { {"11"} over {6} } } {}

1 1 8 + 9 4 1 16 1 32 + 19 8 size 12{1 { {1} over {8} } + { {9} over {4} } - { {1} over {"16"} } - { {1} over {"32"} } + { {"19"} over {8} } } {}

5 21 32 size 12{5 { {"21"} over {"32"} } } {}

22 3 8 16 1 7 size 12{"22" { {3} over {8} } -"16" { {1} over {7} } } {}

15 4 9 + 4 9 16 size 12{"15" { {4} over {9} } +4 { {9} over {"16"} } } {}

20 1 144 size 12{"20" { {1} over {"144"} } } {}

4 17 88 + 5 9 110 size 12{4 { {"17"} over {"88"} } +5 { {9} over {"110"} } } {}

6 11 12 + 2 3 size 12{6 { {"11"} over {"12"} } + { {2} over {3} } } {}

7 7 12 size 12{7 { {7} over {"12"} } } {}

8 9 16 7 9 size 12{8 { {9} over {"16"} } - { {7} over {9} } } {}

5 2 11 1 12 size 12{5 { {2} over {"11"} } - { {1} over {"12"} } } {}

5 13 132 size 12{5 { {"13"} over {"132"} } } {}

18 15 16 33 34 size 12{"18" { {"15"} over {"16"} } - { {"33"} over {"34"} } } {}

1 89 112 21 56 size 12{1 { {"89"} over {"112"} } - { {"21"} over {"56"} } } {}

1 47 212 size 12{1 { {"47"} over {"212"} } } {}

11 11 24 7 13 18 size 12{"11" { {"11"} over {"24"} } -7 { {"13"} over {"18"} } } {}

5 27 84 3 5 42 + 1 1 21 size 12{5 { {"27"} over {"84"} } -3 { {5} over {"42"} } +1 { {1} over {"21"} } } {}

3 1 4 size 12{3 { {1} over {4} } } {}

16 1 48 16 1 96 + 1 144 size 12{"16" { {1} over {"48"} } -"16" { {1} over {"96"} } + { {1} over {"144"} } } {}

A man pours 2 5 8 size 12{2 { {5} over {8} } } {} gallons of paint from a bucket into a tray. After he finishes pouring, there are 1 1 4 size 12{1 { {1} over {4} } } {} gallons of paint left in his bucket. How much paint did the man pour into the tray?

Think about the wording.

2 5 8 gallons

A particular computer stock opened at 37 3 8 size 12{"37" { {3} over {8} } } {} and closed at 38 1 4 size 12{"38" { {1} over {4} } } {} . What was the net gain for this stock?

A particular diet program claims that 4 3 16 size 12{4 { {3} over {"16"} } } {} pounds can be lost the first month, 3 1 4 size 12{3 { {1} over {4} } } {} pounds can be lost the second month, and 1 1 2 size 12{1 { {1} over {2} } } {} pounds can be lost the third month. How many pounds does this diet program claim a person can lose over a 3-month period?

8 15 16 pounds

If a person who weighs 145 3 4 size 12{"145" { {3} over {4} } } {} pounds goes on the diet program described in the problem above, how much would he weigh at the end of 3 months?

If the diet program described in the problem above makes the additional claim that from the fourth month on, a person will lose 1 1 8 size 12{1 { {1} over {8} } } {} pounds a month, how much will a person who begins the program weighing 208 3 4 size 12{"208" { {3} over {4} } } {} pounds weight after 8 months?

194 3 16 pounds

Exercises for review

( [link] ) Use exponents to write 4 4 4 size 12{4 cdot 4 cdot 4} {} .

( [link] ) Find the greatest common factor of 14 and 20.

2

( [link] ) Convert 16 5 size 12{ { {"16"} over {5} } } {} to a mixed number.

( [link] ) Find the sum. 4 9 + 1 9 + 2 9 size 12{ { {4} over {9} } + { {1} over {9} } + { {2} over {9} } } {} .

7 9 size 12{ { {7} over {9} } } {}

( [link] ) Find the difference. 15 26 3 10 size 12{ { {"15"} over {"26"} } - { {3} over {"10"} } } {} .

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask