<< Chapter < Page Chapter >> Page >
The module discusses the concept of stationarity in random processes and describes the various types. Also, a review of distribution and density functions is provided to aid in the understanding of stationarity.

Introduction

From the definition of a random process , we know that all random processes are composed of random variables, each at its ownunique point in time. Because of this, random processes have all the properties of random variables, such as mean,correlation, variances, etc.. When dealing with groups of signals or sequences it will be important for us to be able toshow whether of not these statistical properties hold true for the entire random process. To do this, the concept of stationary processes has been developed. The general definition of a stationary process is:

stationary process
a random process where all of its statistical properties do not vary with time
Processes whose statistical properties do change are referred to as nonstationary .

Understanding the basic idea of stationarity will help you to be able to follow the more concrete and mathematical definitionto follow. Also, we will look at various levels of stationarity used to describe the various types ofstationarity characteristics a random process can have.

Distribution and density functions

In order to properly define what it means to be stationary from a mathematical standpoint, one needs to be somewhatfamiliar with the concepts of distribution and density functions. If you can remember your statistics then feel freeto skip this section!

Recall that when dealing with a single random variable, the probability distribution function is a simply tool used to identify the probability that our observed randomvariable will be less than or equal to a given number. More precisely, let X be our random variable, and let x be our given value; from this we can define the distribution function as

F x x X x
This same idea can be applied to instances where we have multiple random variables as well. There may be situationswhere we want to look at the probability of event X and Y both occurring. For example, below is an example of a second-order joint distribution function .
F x x y X x Y y

While the distribution function provides us with a full view of our variable or processes probability, it is not always themost useful for calculations. Often times we will want to look at its derivative, the probability density function (pdf) . We define the the pdf as

f x x x F x x
f x x dx x X x dx
reveals some of the physical significance of the density function. This equations tellsus the probability that our random variable falls within a given interval can be approximated by f x x dx . From the pdf, we can now use our knowledge of integrals to evaluate probabilities from the aboveapproximation. Again we can also define a joint density function which will include multiple random variablesjust as was done for the distribution function. The density function is used for a variety of calculations, such as findingthe expected value or proving a random variable is stationary, to name a few.

The above examples explain the distribution and density functions in terms of a single random variable, X . When we are dealing with signals and random processes, remember that we will have a set of randomvariables where a different random variable will occur at each time instance of the random process, X t k . In other words, the distribution and density function will also need to take into account the choice oftime.

Stationarity

Below we will now look at a more in depth and mathematical definition of a stationary process. As was mentionedpreviously, various levels of stationarity exist and we will look at the most common types.

First-order stationary process

A random process is classified as first-order stationary if its first-order probability density function remains equal regardless of any shift in time toits time origin. If we let x t 1 represent a given value at time t 1 , then we define a first-order stationary as one that satisfies the following equation:

f x x t 1 f x x t 1
The physical significance of this equation is that our density function, f x x t 1 , is completely independent of t 1 and thus any time shift, .

The most important result of this statement, and the identifying characteristic of any first-order stationaryprocess, is the fact that the mean is a constant, independent of any time shift. Below we show the resultsfor a random process, X , that is a discrete-time signal, x n .

X m x n x n constant (independent of n)

Second-order and strict-sense stationary process

A random process is classified as second-order stationary if its second-order probability density function does not vary over any time shift applied to bothvalues. In other words, for values x t 1 and x t 2 then we will have the following be equal for an arbitrary time shift .

f x x t 1 x t 2 f x x t 1 x t 2
From this equation we see that the absolute time does not affect our functions, rather it only really depends on thetime difference between the two variables. Looked at another way, this equation can be described as
X t 1 x 1 X t 2 x 2 X t 1 x 1 X t 2 x 2

These random processes are often referred to as strict sense stationary (SSS) when all of the distribution functions of the process are unchanged regardless of the time shift applied to them.

For a second-order stationary process, we need to look at the autocorrelation function to see its most important property. Since we have already stated that a second-order stationaryprocess depends only on the time difference, then all of these types of processes have the following property:

R x x t t X t X t R x x

Wide-sense stationary process

As you begin to work with random processes, it will become evident that the strict requirements of a SSS process ismore than is often necessary in order to adequately approximate our calculations on random processes. We definea final type of stationarity, referred to as wide-sense stationary (WSS) , to have slightly more relaxed requirements but ones that are still enough toprovide us with adequate results. In order to be WSS a random process only needs to meet the following tworequirements.

  • X x n constant
  • X t X t R x x
Note that a second-order (or SSS) stationary process willalways be WSS; however, the reverse will not always hold true.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signal and information processing for sonar. OpenStax CNX. Dec 04, 2007 Download for free at http://cnx.org/content/col10422/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal and information processing for sonar' conversation and receive update notifications?

Ask