<< Chapter < Page Chapter >> Page >
This module describes what inverse functions are and how they can be used.

Let's go back to Alice, who makes $100/day. We know how to answer questions such as "After 3 days, how much money has she made?" We use the function m ( t ) = 100 t .

But suppose I want to ask the reverse question: “If Alice has made $300, how many hours has she worked?” This is the job of an inverse function. It gives the same relationship, but reverses the dependent and independent variables. t ( m ) = m / 100 . Given any amount of money, divide it by 100 to find how many days she has worked.

  • If a function answers the question: “Alice worked this long, how much money has she made?” then its inverse answers the question: “Alice made this much money, how long did she work?"
  • If a function answers the question: “I have this many spoons, how much do they weigh?” then its inverse answers the question: “My spoons weigh this much, how many do I have?”
  • If a function answers the question: “How many hours of music fit on 12 CDs?” then its inverse answers the question: “How many CDs do you need for 3 hours of music?”

How do you recognize an inverse function?

Let’s look at the two functions above:

m ( t ) = 100 t size 12{m \( t \) ="100"t} {}
t ( m ) = m / 100 size 12{t \( m \) =m/"100"} {}

Mathematically, you can recognize these as inverse functions because they reverse the inputs and the outputs .

3 m ( t ) = 100 t 300 size 12{3 rightarrow m \( t \) ="100"t rightarrow "300"} {}
300 t ( m ) = m / 100 3 size 12{"300" rightarrow t \( m \) =m/"100" rightarrow 3} {}
Inverse functions

Of course, this makes logical sense. The first line above says that “If Alice works 3 hours, she makes $300.” The second line says “If Alice made $300, she worked 3 hours.” It’s the same statement, made in two different ways.

But this “reversal” property gives us a way to test any two functions to see if they are inverses. For instance, consider the two functions:

f ( x ) = 3x + 7 size 12{f \( x \) =3x+7} {}
g ( x ) = 1 3 x 7 size 12{g \( x \) = { { size 8{1} } over { size 8{3} } } x - 7} {}

They look like inverses, don’t they? But let’s test and find out.

2 3x + 7 13 size 12{2 rightarrow 3x+7 rightarrow "13"} {}
13 3 x - 7 13 3 - 7 - 8 3 size 12{"13" rightarrow 1/3x-7 rightarrow "13"/3-7 rightarrow -8/3 } {}
Not inverse functions

The first function turns a 2 into a 13. But the second function does not turn 13 into 2. So these are not inverses.

On the other hand, consider:

f ( x ) = 3x + 7 size 12{f \( x \) =3x+7} {}
g ( x ) = 1 3 x 7 size 12{g \( x \) = { { size 8{1} } over { size 8{3} } } left (x - 7 right )} {}

Let’s run our test of inverses on these two functions.

2 3x + 7 13 size 12{2 rightarrow 3x+7 rightarrow "13"} {}
13 1 3 x 7 2 size 12{"13" rightarrow { { size 8{1} } over { size 8{3} } } left (x - 7 right ) rightarrow 2} {}
Inverse functions

So we can see that these functions do, in fact, reverse each other: they are inverses.

A common example is the Celsius-to-Fahrenheit conversion:

F ( C ) = 9 5 C + 32 size 12{F \( C \) = left ( { {9} over {5} } right )C+"32"} {}
C ( F ) = 5 9 F 32 size 12{C \( F \) = left ( { {5} over {9} } right ) left (F - "32" right )} {}

where C size 12{C} {} is the Celsius temperature and F size 12{F} {} the Fahrenheit. If you plug 100 ° C size 12{"100"°C} {} into the first equation, you find that it is 212 ° F size 12{"212"°F} {} . If you ask the second equation about 212 ° F size 12{"212"°F} {} , it of course converts that back into 100 ° C size 12{"100"°C} {} .

The notation and definition of an inverse function

The notation for the inverse function of f ( x ) size 12{f \( x \) } {} is f 1 ( x ) size 12{f rSup { size 8{ - 1} } \( x \) } {} . This notation can cause considerable confusion, because it looks like an exponent, but it isn’t. f 1 ( x ) size 12{f rSup { size 8{ - 1} } \( x \) } {} simply means “the inverse function of f ( x ) size 12{f \( x \) } {} .” It is defined formally by the fact that if you plug any number x size 12{x} {} into one function, and then plug the result into the other function, you get back where you started. (Take a moment to convince yourself that this is the same definition I gave above more informally.) We can represent this as a composition function by saying that f ( f 1 ( x ) ) = x size 12{f \( f rSup { size 8{ - 1} } \( x \) \) =x} {} .

Questions & Answers

profit maximize for monopolistically?
Usman Reply
what kind of demand curve under monopoly?
Mik Reply
what is the difference between inflation and scarcity ?
Abdu Reply
What stops oligopolists from acting together as a monopolist and earning the highest possible level of profits?
Mik
why economics is difficult for 2nd school students.
Siraj Reply
what does mean opportunity cost?
Aster Reply
what is poetive effect of population growth
Solomon Reply
what is inflation
Nasir Reply
what is demand
Eleni
what is economics
IMLAN Reply
economics theory describes individual behavior as the result of a process of optimization under constraints the objective to be reached being determined by
Kalkidan
Economics is a branch of social science that deal with How to wise use of resource ,s
Kassie
need
WARKISA
Economic Needs: In economics, needs are goods or services that are necessary for maintaining a certain standard of living. This includes things like healthcare, education, and transportation.
Kalkidan
What is demand and supply
EMPEROR Reply
deman means?
Alex
what is supply?
Alex
ex play supply?
Alex
Money market is a branch or segment of financial market where short-term debt instruments are traded upon. The instruments in this market includes Treasury bills, Bonds, Commercial Papers, Call money among other.
murana Reply
good
Kayode
what is money market
umar Reply
Examine the distinction between theory of comparative cost Advantage and theory of factor proportion
Fatima Reply
What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
price
Kenu
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Advanced algebra ii: conceptual explanations. OpenStax CNX. May 04, 2010 Download for free at http://cnx.org/content/col10624/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Advanced algebra ii: conceptual explanations' conversation and receive update notifications?

Ask