Explain how an object must be displaced for a force on it to do work.
Explain how relative directions of force and displacement of an object determine whether the work done on the object is positive, negative, or zero.
The information presented in this section supports the following AP® learning objectives and science practices:
5.B.5.1 The student is able to design an experiment and analyze data to examine how a force exerted on an object or system does work on the object or system as it moves through a distance.
(S.P. 4.2, 5.1)
5.B.5.2 The student is able to design an experiment and analyze graphical data in which interpretations of the area under a force-distance curve are needed to determine the work done on or by the object or system.
(S.P. 4.5, 5.1)
5.B.5.3 The student is able to predict and calculate from graphical data the energy transfer to or work done on an object or system from information about a force exerted on the object or system through a distance.
(S.P. 1.5, 2.2, 6.4)
What it means to do work
The scientific definition of work differs in some ways from its everyday meaning. Certain things we think of as hard work, such as writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work reveals its relationship to energy—whenever work is done, energy is transferred.
For work, in the scientific sense, to be done on an object, a force must be exerted on that object and there must be displacement of that object in the direction of the force.
Formally, the
work done on a system by a constant force is defined to be
the product of the component of the force in the direction of motion and the distance through which the force acts . For a constant force, this is expressed in equation form as
where
is work,
is the displacement of the system, and
is the angle between the force vector
and the displacement vector
, as in
[link] . We can also write this as
To find the work done on a system that undergoes motion that is not one-way or that is in two or three dimensions, we divide the motion into one-way one-dimensional segments and add up the work done over each segment.
What is work?
The work done on a system by a constant force is
the product of the component of the force in the direction of motion times the distance through which the force acts . For one-way motion in one dimension, this is expressed in equation form as
where
is work,
is the magnitude of the force on the system,
is the magnitude of the displacement of the system, and
is the angle between the force vector
and the displacement vector
.
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?