<< Chapter < Page Chapter >> Page >

To examine what the definition of work means, let us consider the other situations shown in [link] . The person holding the briefcase in [link] (b) does no work, for example. Here d = 0 size 12{d=0} {} , so W = 0 size 12{W=0} {} . Why is it you get tired just holding a load? The answer is that your muscles are doing work against one another, but they are doing no work on the system of interest (the “briefcase-Earth system”—see Gravitational Potential Energy for more details). There must be displacement for work to be done, and there must be a component of the force in the direction of the motion. For example, the person carrying the briefcase on level ground in [link] (c) does no work on it, because the force is perpendicular to the motion. That is, cos 90 º = 0 size 12{"cos""90""°="0} {} , and so W = 0 size 12{W=0} {} .

In contrast, when a force exerted on the system has a component in the direction of motion, such as in [link] (d), work is done—energy is transferred to the briefcase. Finally, in [link] (e), energy is transferred from the briefcase to a generator. There are two good ways to interpret this energy transfer. One interpretation is that the briefcase’s weight does work on the generator, giving it energy. The other interpretation is that the generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the briefcase, and the displacement downward. This makes θ = 180 º size 12{θ="180"°} {} , and cos 180 º = –1 size 12{"cos 180"°= +- 1} {} ; therefore, W size 12{W} {} is negative.

Real world connections: when work happens

Note that work as we define it is not the same as effort. You can push against a concrete wall all you want, but you won’t move it. While the pushing represents effort on your part, the fact that you have not changed the wall’s state in any way indicates that you haven’t done work. If you did somehow push the wall over, this would indicate a change in the wall’s state, and therefore you would have done work.

This can also be shown with [link] (a): as you push a lawnmower against friction, both you and friction are changing the lawnmower’s state. However, only the component of the force parallel to the movement is changing the lawnmower’s state. The component perpendicular to the motion is trying to push the lawnmower straight into Earth; the lawnmower does not move into Earth, and therefore the lawnmower’s state is not changing in the direction of Earth.

Similarly, in [link] (c), both your hand and gravity are exerting force on the briefcase. However, they are both acting perpendicular to the direction of motion, hence they are not changing the condition of the briefcase and do no work. However, if the briefcase were dropped, then its displacement would be parallel to the force of gravity, which would do work on it, changing its state (it would fall to the ground).

Calculating work

Work and energy have the same units. From the definition of work, we see that those units are force times distance. Thus, in SI units, work and energy are measured in newton-meters . A newton-meter is given the special name joule    (J), and 1 J = 1 N m = 1 kg m 2 /s 2 size 12{1" J"=1" N" cdot m=1" kg" cdot m rSup { size 8{2} } "/s" rSup { size 8{2} } } {} . One joule is not a large amount of energy; it would lift a small 100-gram apple a distance of about 1 meter.

Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Work and energy. OpenStax CNX. Nov 09, 2015 Download for free at http://legacy.cnx.org/content/col11902/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Work and energy' conversation and receive update notifications?

Ask