<< Chapter < Page Chapter >> Page >
This module offers a brief and generally intuitive introduction to maximum likelihood estimation methods. It is intended as a guide for advanced undergraduates.

The maximum likelihood method

Introduction

The maximum likelihood (ML) method is an alternative to ordinary least squares (OLS) and offers a more general approach to the problem of finding estimators of unknown population parameters. In these notes we present an intuitive introduction to the ML technique. We begin our discussion with a description of continuous random variables.

Continuous random variables

Assume that x MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F1@ is a continuous random variable over the interval x . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaeyOhIuQaeyizImQaamiEaiabgsMiJkabg6HiLkaac6caaaa@3EDC@ Because of the assumption of continuity we need some special definitions.

Probability density function . Any function f ( x ) MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3965@ that has the following characteristics is a probability density function (pdf): (1) f ( x ) > 0 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg6da+iaaicdaaaa@3B27@ and (2) f ( x ) d x = 1. MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaeyypa0JaaGymaiaac6caaaa@4400@ The probability that x has a value between a and b is given by Pr ( a x b ) = a b f ( x ) d x . MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaackhadaqadaqaaiaadggacqGHKjYOcaWG4bGaeyizImQaamOyaaGaayjkaiaawMcaaiabg2da9maapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadsgacaWG4baaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOGaaiOlaaaa@4ACB@ Here are two examples of the probability density functions (pdf) of continuous random variables.

Uniform distribution

Let f ( x ) = 1 α MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabeg7aHbaaaaa@3CD5@ for 0 x α MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadIhacqGHKjYOcqaHXoqyaaa@3CB4@ and 0 elsewhere, where α > 0. MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyOpa4JaaGimaiaac6caaaa@3A07@ A graph of the pdf for this distribution is shown in Figure 1.

Probability distribution function of a uniform distribution.

A graph of the uniform distribution.
The probability x falls between a and b is given by the colored in area.

It is easy to see from the graph that f ( x ) = 1 α > 0 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabeg7aHbaacqGH+aGpcaaIWaaaaa@3E97@ and Pr ( a x b ) = f ( x ) d x = 0 α 1 α d x = 1. MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiiaiaabccaciGGqbGaaiOCamaabmaabaGaamyyaiabgsMiJkaadIhacqGHKjYOcaWGIbaacaGLOaGaayzkaaGaeyypa0Zaa8qCaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaeyypa0Zaa8qCaeaadaWcaaqaaiaaigdaaeaacqaHXoqyaaGaamizaiaadIhaaSqaaiaaicdaaeaacqaHXoqya0Gaey4kIipakiabg2da9iaaigdacaGGUaaaaa@59F7@ Moreover, as shown in Figure 1, the area under the pdf curve between a and b is equal to the probability that x lies between a and b ; that is, Pr ( a x b ) = a b ( 1 α ) d x = x α | a b = b a α . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiuaiaackhadaqadaqaaiaadggacqGHKjYOcaWG4bGaeyizImQaamOyaaGaayjkaiaawMcaaiabg2da9maapehabaWaaeWaaeaadaWcaaqaaiaaigdaaeaacqaHXoqyaaaacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdGccqGH9aqpdaabcaqaamaalaaabaGaamiEaaqaaiabeg7aHbaaaiaawIa7amaaDaaaleaacaWGHbaabaGaamOyaaaakiabg2da9maalaaabaGaamOyaiabgkHiTiaadggaaeaacqaHXoqyaaGaaiOlaaaa@5809@

The calculation of the mean and variance of this distribution is relatively simple. The population mean is given by μ x = E ( x ) = 0 α x f ( x ) d x MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaamyramaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maapehabaGaamiEaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWGKbGaamiEaaWcbaGaaGimaaqaaiabeg7aHbqdcqGHRiI8aaaa@494E@ or μ x = 0 α x ( 1 α ) d x = x 2 2 α | 0 α = α 2 . MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaSbaaSqaaiaadIhaaeqaaOGaeyypa0Zaa8qCaeaacaWG4bWaaeWaaeaadaWcaaqaaiaaigdaaeaacqaHXoqyaaaacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiaaicdaaeaacqaHXoqya0Gaey4kIipakiabg2da9maaeiaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiabeg7aHbaaaiaawIa7amaaDaaaleaacaaIWaaabaGaeqySdegaaOGaeyypa0ZaaSaaaeaacqaHXoqyaeaacaaIYaaaaaaa@527C@

The population variance Quite often, as in the exercises at the end of this module, it is easier to calculate the variance of a distribution using the alternative formula for the variance: σ x 2 = V ( x ) = E ( x μ ) 2 = E ( x 2 ) μ 2 , MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaDaaaleaacaWG4baabaGaaGOmaaaakiabg2da9iaadAfadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGfbWaaeWaaeaacaWG4bGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamyramaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgkHiTiabeY7aTnaaCaaaleqabaGaaGOmaaaakiaacYcaaaa@4F7E@ where E ( x 2 ) = x 2 f ( x ) d x . MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGH9aqpdaWdbaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamizaiaadIhaaSqabeqaniabgUIiYdGccaGGUaaaaa@4530@ is given by V ( x ) = E [ ( x μ x ) 2 . ] MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadweadaWadaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTnaaBaaaleaacaWG4baabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaaaa@4465@ Thus, V ( x ) = 0 α ( x α 2 ) 2 ( 1 α ) d x = 0 α ( x 2 α x + α 2 4 ) ( 1 α ) d x MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maapehabaWaaeWaaeaacaWG4bGaeyOeI0YaaSaaaeaacqaHXoqyaeaacaaIYaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaSaaaeaacaaIXaaabaGaeqySdegaaaGaayjkaiaawMcaaiaadsgacaWG4baaleaacaaIWaaabaGaeqySdeganiabgUIiYdGccqGH9aqpdaWdXbqaamaabmaabaGaamiEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiabeg7aHjaadIhacqGHRaWkdaWcaaqaaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaaaaacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaaigdaaeaacqaHXoqyaaaacaGLOaGaayzkaaGaamizaiaadIhaaSqaaiaaicdaaeaacqaHXoqya0Gaey4kIipaaaa@62B5@ or V ( x ) = x 3 3 α x 2 2 + α 4 x | 0 α = α 2 3 α 2 2 + α 2 4 = α 2 12 . MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaeiaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacaaIZaaaaaGcbaGaaG4maiabeg7aHbaacqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiabgUcaRmaalaaabaGaeqySdegabaGaaGinaaaacaWG4baacaGLiWoadaqhaaWcbaGaaGimaaqaaiabeg7aHbaakiabg2da9maalaaabaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGcbaGaaG4maaaacqGHsisldaWcaaqaaiabeg7aHnaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaGaey4kaSYaaSaaaeaacqaHXoqydaahaaWcbeqaaiaaikdaaaaakeaacaaI0aaaaiabg2da9maalaaabaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGymaiaaikdaaaGaaiOlaaaa@5D95@

Because of the simple mathematical form of the uniform pdf, the calculations in Example 1 are relatively straight forward. While the calculations for random variables with a pdf that has a more complicated form are generally more difficult (if algebraically possible), the basic methodology remains the same. Example 2 considers the case of a more complicated pdf.

The normal distribution.

A random variable with a mean of μ MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@37AA@ and a variance of σ 2 MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaaa@38A0@ that has a normal distribution —that is, x ~ N ( μ , σ 2 ) MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaac6hacaWGobWaaeWaaeaacqaH8oqBcaGGSaGaeq4Wdm3aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaaiifGaaa@4023@ has the pdf f ( x ) = 1 σ 2 π e ( x μ ) 2 2 σ 2 . MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabeo8aZnaakaaabaGaaGOmaiabec8aWbWcbeaaaaGccaWGLbWaaWbaaSqabeaacqGHsisldaWcaaqaamaabmaabaGaamiEaiabgkHiTiabeY7aTbGaayjkaiaawMcaamaaCaaameqabaGaaGOmaaaaaSqaaiaaikdacqaHdpWCdaahaaadbeqaaiaaikdaaaaaaaaakiaac6caaaa@4BED@ A typical graph of this pdf is given in Figure 2. The area under the curve between values of x of a and b is equal to the probability that x falls between a and b .

Probability distribution function of a normal distribution.

A graph of the Normal distribution.
The probability x falls between a and b is given by the shaded area.

Joint distributions of samples and the ml method.

Most of the statistical work that economists use involves the use of a sample of observations. It is usual to assume that the members of the sample are drawn independently of each other. The implication of this assumption is that the pdf of the joint distribution is equal to the product of the pfd of each observation ; i.e.,

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Econometrics for honors students. OpenStax CNX. Jul 20, 2010 Download for free at http://cnx.org/content/col11208/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Econometrics for honors students' conversation and receive update notifications?

Ask