<< Chapter < Page Chapter >> Page >

Interesting fact

It is a known fact that well-insulated buildings need less energy for heating than do buildings that have no insulation. Two building materials that are being used more and more worldwide, are mineral wool and polystyrene . Mineral wool is a good insulator because it holds air still in the matrix of the wool so that heat is not lost. Since air is a poor conductor and a good insulator, this helps to keep energy within the building. Polystyrene is also a good insulator and is able to keep cool things cool and hot things hot. It has the added advantage of being resistant to moisture, mould and mildew.

Remember that concepts such as conductivity and insulation are not only relevant in the building, industrial and home environments. Think for example of the layer of blubber or fat that is found in some animals. In very cold environments, fat and blubber not only provide protection, but also act as an insulator to help the animal keep its body temperature at the right level. This is known as thermoregulation .

Magnetic and non-magnetic materials

We have now looked at a number of ways in which matter can be grouped, such as into metals, semi-metals and non-metals; electrical conductors and insulators, and thermal conductors and insulators. One way in which we can further group metals, is to divide them into those that are magnetic and those that are non-magnetic.

Magnetism

Magnetism is one of the phenomena by which materials exert attractive or repulsive forces on other materials.

A metal is said to be ferromagnetic if it can be magnetised (i.e. made into a magnet). If you hold a magnet very close to a metal object, it may happen that its own electrical field will be induced and the object becomes magnetic. Some metals keep their magnetism for longer than others. Look at iron and steel for example. Iron loses its magnetism quite quickly if it is taken away from the magnet. Steel on the other hand will stay magnetic for a longer time. Steel is often used to make permanent magnets that can be used for a variety of purposes.

Magnets are used to sort the metals in a scrap yard, in compasses to find direction, in the magnetic strips of video tapes and ATM cards where information must be stored, in computers and TV's, as well as in generators and electric motors.

Investigation : magnetism

You can test whether an object is magnetic or not by holding another magnet close to it. If the object is attracted to the magnet, then it too is magnetic.

Find some objects in your classroom or your home and test whether they are magnetic or not. Then complete the table below:

Object Magnetic or non-magnetic

Group discussion : properties of materials

In groups of 4-5, discuss how our knowledge of the properties of materials has allowed society to:

  • develop advanced computer technology
  • provide homes with electricity
  • find ways to conserve energy

The following presentation provides a summary of the classification of matter.

Summary

  • All the objects and substances that we see in the world are made of matter .
  • This matter can be classified according to whether it is a mixture or a pure substance .
  • A mixture is a combination of one or more substances that are not chemically bonded to each other. Examples of mixtures are air (a mixture of different gases) and blood (a mixture of cells, platelets and plasma).
  • The main characteristics of mixtures are that the substances that make them up are not in a fixed ratio, they keep their individual properties and they can be separated from each other using mechanical means.
  • A heterogeneous mixture is non-uniform and the different parts of the mixture can be seen. An example would be a mixture of sand and water.
  • A homogeneous mixture is uniform, and the different components of the mixture can't be seen. An example would be a salt solution. A salt solution is a mixture of salt and water. The salt dissolves in the water, meaning that you can't see the individual salt particles. They are interspersed between the water molecules. Another example is a metal alloy such as steel.
  • Mixtures can be separated using a number of methods such as filtration, heating, evaporation, centrifugation and dialysis.
  • Pure substances can be further divided into elements and compounds .
  • An element is a substance that can't be broken down into simpler substances through chemical means.
  • All the elements are recorded in the Periodic Table of the Elements . Each element has its own chemical symbol. Examples are iron ( Fe ), sulphur ( S ), calcium ( Ca ), magnesium ( Mg ) and fluorine ( F ).
  • A compound is a substance that is made up of two or more elements that are chemically bonded to each other in a fixed ratio. Examples of compounds are sodium chloride ( NaCl ), iron sulphide ( FeS ), calcium carbonate ( CaCO 3 ) and water ( H 2 O ).
  • When naming compounds and writing their chemical formula , it is important to know the elements that are in the compound, how many atoms of each of these elements will combine in the compound and where the elements are in the Periodic Table. A number of rules can then be followed to name the compound.
  • Another way of classifying matter is into metals (e.g. iron, gold, copper), semi-metals (e.g. silicon and germanium) and non-metals (e.g. sulphur, phosphorus and nitrogen).
  • Metals are good electrical and thermal conductors, they have a shiny lustre, they are malleable and ductile, and they have a high melting point. These properties make metals very useful in electrical wires, cooking utensils, jewellery and many other applications.
  • A further way of classifying matter is into electrical conductors , semi-conductors and insulators .
  • An electrical conductor allows an electrical current to pass through it. Most metals are good electrical conductors.
  • An electrical insulator is not able to carry an electrical current. Examples are plastic, wood, cotton material and ceramic.
  • Materials may also be classified as thermal conductors or thermal insulators depending on whether or not they are able to conduct heat.
  • Materials may also be either magnetic or non-magnetic .

Summary

  1. For each of the following multiple choice questions, choose one correct answer from the list provided.
    1. Which of the following can be classified as a mixture:
      1. sugar
      2. table salt
      3. air
      4. iron
    2. An element can be defined as:
      1. A substance that cannot be separated into two or more substances by ordinary chemical (or physical) means
      2. A substance with constant composition
      3. A substance that contains two or more substances, in definite proportion by weight
      4. A uniform substance
  2. Classify each of the following substances as an element , a compound , a solution (homogeneous mixture), or a heterogeneous mixture : salt, pure water, soil, salt water, pure air, carbon dioxide, gold and bronze.
  3. Look at the table below. In the first column (A) is a list of substances. In the second column (B) is a description of the group that each of these substances belongs in. Match up the substance in Column A with the description in Column B.
    Column A Column B
    iron a compound containing 2 elements
    H 2 S a heterogeneous mixture
    sugar solution a metal alloy
    sand and stones an element
    steel a homogeneous mixture
  4. You are given a test tube that contains a mixture of iron filings and sulphur. You are asked to weigh the amount of iron in the sample.
    1. Suggest one method that you could use to separate the iron filings from the sulphur.
    2. What property of metals allows you to do this?
  5. Given the following descriptions, write the chemical formula for each of the following substances:
    1. silver metal
    2. a compound that contains only potassium and bromine
    3. a gas that contains the elements carbon and oxygen in a ratio of 1:2
  6. Give the names of each of the following compounds:
    1. NaBr
    2. BaSO 4
    3. SO 2
  7. For each of the following materials, say what properties of the material make it important in carrying out its particular function.
    1. tar on roads
    2. iron burglar bars
    3. plastic furniture
    4. metal jewellery
    5. clay for building
    6. cotton clothing

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science [caps]. OpenStax CNX. Sep 30, 2011 Download for free at http://cnx.org/content/col11305/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science [caps]' conversation and receive update notifications?

Ask