<< Chapter < Page Chapter >> Page >

Mathematics

Grade 8

The number system

Module 2

Prime factors, square roots and cube roots

CLASS ASSIGNMENT 1

1. Prime factors

  • How do you write a number as the product of its prime factors?
  • And how do you write it in exponent notation?

E.g. Question: Write 24 as the product of its prime factors(remember that prime factors are used as divisors only)

2 24
2 12
2 6
3 3
1

Prime factors of 24 = {2; 3}

24 as product of its prime factors: 24 = 2 x 2 x 2 x 3

24 = 2 3 x 3 (exponential notation)

  • Now express each of the following as the product of their prime factors(exponential notation) and also write the prime factors of each.

2. Square roots and cube roots

  • How do you determine the square root ( size 12{ sqrt {} } {} )or cube root ( 3 size 12{ nroot { size 8{3} } {} } {} )of a number with the help of prime factors?
  • Do you recall this?
  • Determine: 324 size 12{ sqrt {"324"} } {} Step 1: break down into prime factors Step 2: write as product of prime factors (in exponential notation)Step 3: 324 size 12{ sqrt {"324"} } {} means (324) ½ (obtain half of each exponent)
2 324
2 162
3 81
3 27
3 9
3 3
1

Therefore: 324 size 12{ sqrt {"324"} } {} = (2 2 x 3 4 ) ½ = 2 1 x 3 2 = 2 x 9 = 18

(324 is a perfect square, because 18 x 18 = 324)

  • Remember: size 12{ sqrt {```} } {} means (......) ½ and 3 size 12{ nroot { size 8{3} } {```} } {} means (......) 1/3

8x 12 3 = 2x 12 ÷ 3 = 4 size 12{ nroot { size 8{3} } {8x rSup { size 8{"12"} } } `=`2x rSup { size 8{"12" div 3=4} } } {} therefore 2x 4 size 12{2x rSup { size 8{4} } } {}

2.1 Calculate with the help of prime factors:

(i) 1 024 size 12{ sqrt {"1 024"} } {}

1024

(ii) 1000 3 size 12{ nroot { size 8{3} } {"1000"} } {}

1000

2.2 Calculate:

a) (2 x 3)² =

b) 3 x 8² =

c) 1 3 size 12{ nroot { size 8{3} } {1} } {} =

d) 1 size 12{ nroot {} {1} } {} =

e) 2 2 size 12{ left ( sqrt {2} right ) rSup { size 8{2} } } {} =

f) then 17 2 size 12{ left ( sqrt {"17"} right ) rSup { size 8{2} } } {} =

g) (3 + 4) 3 + 14 =

h) 36 + 9 size 12{ sqrt {"36"} `+` sqrt {9} } {} =

i) 36 + 64 size 12{ sqrt {"36"`+`"64"} } {} =

j) 27 3 size 12{ nroot { size 8{3} } {"27"} } {} + 1 3 size 12{ nroot { size 8{3} } {1} } {} =

k) ( 27 3 ) 3 size 12{ \( nroot { size 8{3} } {"27"} \) rSup { size 8{3} } } {} =

l) 64 x 12 size 12{ sqrt {"64"x rSup { size 8{"12"} } } } {} =

HOMEWORK ASSIGNMENT 1

1. Determine the answers with the help of prime factors:

1.1 4 096 3 size 12{ nroot { size 8{3} } {4`"096"} } {} 1.2 1 296 4 size 12{ nroot { size 8{4} } {1`"296"} } {}

4 096 1 296

2. Determine the answers without using a calculator.

2.1 3 . 3 . 3 . 3 . 3 2 3 size 12{ nroot { size 8{3} } {3 "." 3 "." 3 "." 3 "." 3 rSup { size 8{2} } } } {} =

2.2 5 3 a 6 b 15 3 size 12{ nroot { size 8{3} } {5 rSup { size 8{3} } `a rSup { size 8{6} } `b rSup { size 8{"15"} } } } {} =

2.3 8 ÷ 125 × 27 3 size 12{ nroot { size 8{3} } {8` div `"125"` times `"27"} } {} =

2.4 64 3 + ( 64 3 ) 3 size 12{ nroot { size 8{3} } {"64"} `+` \( ` nroot { size 8{3} } {"64"} ` \) rSup { size 8{3} } } {} =

2.5 2 ( 8 3 ) 3 size 12{2` \( ` nroot { size 8{3} } {8} ` \) rSup { size 8{3} } } {} =

2.6 169 size 12{ sqrt {"169"} } {} =

2.7 ( 6 + 4 × 12 ) 2 size 12{ sqrt { \( 6`+`4` times `"12" \) rSup { size 8{2} } } } {} =

2.8 6 × 1 8 × 12 size 12{ sqrt {6` times 1`8` times `"12"} } {} =

2.9 2 ( 9 ) 2 size 12{2 \( sqrt {9} \) rSup { size 8{2} } } {} =

2.10 ( 6 + 3 ) 2 3 3 size 12{ sqrt { \( 6`+`3 \) rSup { size 8{2} } } ` - `3 rSup { size 8{3} } } {} =

CLASS ASSIGNMENT 2

1. Give the meaning of the following in your own words (discuss it in your group)

  • LCM :

Explain it with the help of an example

  • BCD :

Explain it with the help of an example

2. How would you determine the LCM and BCD of the following numbers?

8; 12; 20

Step 1: Write each number as the product of its prime factors.(Preferably not in exponential notation)

8 = 2 x 2 x 2

12 = 2 x 2 x 3

20 = 2 x 2 x 5

Step 2: First determine the BCD (the number/s occurring in each of the three)Suggestion: If the 2 occurs in each of the three, circle the 2 in each number and write it down once), etc.

BCD = 2 x 2 = 4

Step 3: Now determine the LCM. First write down the BCD and then find the number that occurs in two of the numbers and write it down, finally writing what is left over)

LCM = 4 x 2 x 3 x 5 = 120

3. Do the same and determine the BCD and LCM of the following:

38; 57; 95

Calculate it here:

38 = ....................................................................

57 = ....................................................................

95 = ....................................................................

BCD = .................................. and LCM = ..................................

Assessment

Assessment of myself: by myself: Assessment by Teacher:
I can… 1 2 3 4 Critical Outcomes 1 2 3 4
determine prime factors of a number; (Lo 1.2.6) Critical and creative thinking
express a number as the product of its prime factors; (Lo 1.2.6; 1.2.3) Collaborating
express prime factors in exponent notation; (Lo 1.2.7) Organising en managing
determine the square root of a number; (Lo 1.2.7) Processing of information
determine the cube root of a number. (Lo 1.2.7) Communication
determine/define the smallest common factor ( LCM ); (Lo 1.2.6) Problem solving
determine/define the biggest common divider ( BCD ). (Lo 1.2.6) Independence

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 8. OpenStax CNX. Sep 11, 2009 Download for free at http://cnx.org/content/col11034/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 8' conversation and receive update notifications?

Ask