<< Chapter < Page Chapter >> Page >

Wiskunde

Graad 9

Getalle

Module 2

Maak wiskunde makliker met eksponente

KLASWERK

  • Onthou jy nog hoe eksponente werk? Skryf neer wat “drie tot die mag sewe” beteken. Wat is die grondtal? Wat is die eksponent? Kan jy mooi verduidelik wat ’n mag is?
  • Hierdie deel het baie voorbeelde met getalle; gebruik jou sakrekenaar om hulle uit te werk sodat jy vertroue in die metodes kan ontwikkel.

1. DEFINISIE

2 3 = 2 × 2 × 2 en a 4 = a × a × a × a en b × b × b = b 3

ook

( a+ b ) 3 = ( a + b ) × ( a + b ) × ( a + b ) en 2 3 4 = 2 3 × 2 3 × 2 3 × 2 3 size 12{ left ( { {2} over {3} } right ) rSup { size 8{4} } = left ( { {2} over {3} } right ) times left ( { {2} over {3} } right ) times left ( { {2} over {3} } right ) times left ( { {2} over {3} } right )} {}

1.1 Skryf die volgende uitdrukkings in uitgebreide vorm:

4 3 ( p +2) 5 a 1 (0,5) 7 b 2 × b 3

1.2 Skryf hierdie uitdrukkings as magte:

7 × 7 × 7 × 7 y × y × y × y × y –2 × –2 × –2 ( x + y ) × ( x + y ) × (x + y ) × ( x + y )

1.3 Antwoord sonder om dit uit te werk: Is (–7) 6 dieselfde as –7 6 ?

  • Gebruik nou ’n sakrekenaar en kyk of die twee waardes dieselfde is.
  • Vergelyk ook die volgende pare deur eers te raai wat die antwoord gaan wees, en dan met jou sakrekenaar te kyk hoe goed jy geskat het.

–5 2 en (–5) 2 –12 5 en (–12) 5 –1 3 en (–1) 3

  • Jy behoort nou ’n goeie idee te hê hoe hakies antwoorde beïnvloed – skryf dit neer sodat jy dit sal onthou en in die toekoms kan gebruik wanneer die probleme moeiliker word.
  • Ons som hierdie deel op in ’n definisie:

a r = a × a × a × a × . . . (daar moet r a ’s wees, en r moet ’n natuurlike getal wees)

  • Van nou af moet jy die belangrikste magte begin memoriseer:

2 2 = 4; 2 3 = 8; 2 4 = 16; ens. 3 2 = 9; 3 3 = 27; 3 4 = 81; ens. 4 2 = 16; 4 3 = 64; ens.

Die meeste eksponentsomme moet sonder ’n sakrekenaar gedoen word.

2 VERMENIGVULDIGING

  • Onthou jy nog dat g 3 × g 8 = g 11 ? Kernwoorde: vermenigvuldig ; dieselfde grondtal

2.1 Vereenvoudig: (moenie uitgebreide vorm gebruik nie).

7 7 × 7 7 (–2) 4 × (–2) 13 ( ½ ) 1 × ( ½ ) 2 × ( ½ ) 3 ( a+b ) a × ( a+b ) b

  • Ons vermenigvuldig magte met enerse grondtalle volgens hierdie reël:

a x × a y = a x+y ook = a x a y = a y a x a x + y size 12{ size 11{a rSup { size 8{ size 7{x+y}} } } size 12{ {}=}a rSup { size 8{x} } size 12{ times }a rSup { size 8{y} } size 12{ {}=}a rSup { size 8{y} } size 12{ times }a rSup { size 8{x} } } {} , bv. 8 14 = 8 4 × 8 10 size 12{8 rSup { size 8{"14"} } =8 rSup { size 8{4} } times 8 rSup { size 8{"10"} } } {}

3. DELING

  • 4 6 4 2 = 4 6 2 = 4 4 size 12{ { {4 rSup { size 8{6} } } over {4 rSup { size 8{2} } } } =4 rSup { size 8{6 - 2} } =4 rSup { size 8{4} } } {} is hoe dit werk. Kernwoorde: deel ; dieselfde grondtal

3.1 Probeer hierdie: a 6 a y size 12{ { { size 11{a rSup { size 8{6} } }} over { size 12{a rSup { size 8{y} } } } } } {} 3 23 3 21 size 12{ { {3 rSup { size 8{"23"} } } over {3 rSup { size 8{"21"} } } } } {} a + b p a + b 12 size 12{ { { left ( size 11{a+b} right ) rSup { size 8{p} } } over { size 12{ left (a+b right ) rSup { size 8{"12"} } } } } } {} a 7 a 7 size 12{ { { size 11{a rSup { size 8{7} } }} over { size 12{a rSup { size 8{7} } } } } } {}

  • Die reël wat ons gebruik vir deling van magte is: a x a y = a x y size 12{ { { size 11{a rSup { size 8{x} } }} over { size 12{a rSup { size 8{y} } } } } size 12{ {}=}a rSup { size 8{x - y} } } {} .

Ook a x y = a x a y size 12{ size 11{a rSup { size 8{x - y} } } size 12{ {}= { {a rSup { size 8{x} } } over { size 12{a rSup { size 8{y} } } } } }} {} , bv. a 7 = a 20 a 13 size 12{ size 11{a rSup { size 8{7} } } size 12{ {}= { {a rSup { size 8{"20"} } } over { size 12{a rSup { size 8{"13"} } } } } }} {}

4. VERHEFFING VAN ’n MAG TOT ’n MAG

  • bv. 3 2 4 size 12{ left (3 rSup { size 8{2} } right ) rSup { size 8{4} } } {} = 3 2 × 4 size 12{3 rSup { size 8{2 times 4} } } {} = 3 8 size 12{3 rSup { size 8{8} } } {} .

4.1 Doen die volgende:

  • Die reël werk so: a x y = a xy size 12{ left (a rSup { size 8{x} } right ) rSup { size 8{y} } =a rSup { size 8{ ital "xy"} } } {} ook a xy = a x y = a y x size 12{ size 11{a rSup { size 8{ bold "xy"} } } size 12{ {}= left (a rSup { size 8{x} } right ) rSup { size 8{y} } } size 12{ {}= left (a rSup { size 8{y} } right ) rSup { size 8{x} } }} {} , bv. 6 18 = 6 6 3 size 12{6 rSup { size 8{"18"} } = left (6 rSup { size 8{6} } right ) rSup { size 8{3} } } {}

5. DIE MAG VAN ’n PRODUK

  • So werk dit:

(2 a ) 3 = (2 a ) × (2 a ) × (2 a ) = 2 × a × 2 × a × 2 × a = 2 × 2 × 2 × a × a × a = 8 a 3

  • Dit word gewoonlik in twee stappe gedoen, nl.: (2 a ) 3 = 2 3 × a 3 = 8 a 3

5.1 Doen self hierdie: (4 x ) 2 ( ab ) 6 (3 × 2) 4 ( ½ x ) 2 ( a 2 b 3 ) 2

  • Dis duidelik dat die eksponent aan elke faktor in die hakies behoort.
  • Hier is die reël: ( ab ) x = a x b x ook a p b p = ab b size 12{ size 11{a rSup { size 8{p} } } size 12{ times }b rSup { size 8{p} } size 12{ {}= left ( bold "ab" right ) rSup { size 8{b} } }} {} bv. 14 3 = 2 × 7 3 = 2 3 7 3 size 12{"14" rSup { size 8{3} } = left (2 times 7 right ) rSup { size 8{3} } =2 rSup { size 8{3} } 7 rSup { size 8{3} } } {} en 3 2 × 4 2 = 3 × 4 2 = 12 2 size 12{3 rSup { size 8{2} } times 4 rSup { size 8{2} } = left (3 times 4 right ) rSup { size 8{2} } ="12" rSup { size 8{2} } } {}

6. DIE MAG VAN ’n BREUK

  • Dis baie dieselfde as die mag van ’n produk. a b 3 = a 3 b 3 size 12{ left ( { { size 11{a}} over { size 11{b}} } right ) rSup { size 8{3} } size 12{ {}= { {a rSup { size 8{3} } } over { size 12{b rSup { size 8{3} } } } } }} {}

6.1 Doen hierdie, maar wees versigtig: 2 3 p size 12{ left ( { {2} over {3} } right ) rSup { size 8{p} } } {} 2 2 3 size 12{ left ( { { left ( - 2 right )} over {2} } right ) rSup { size 8{3} } } {} x 2 y 3 2 size 12{ left ( { { size 11{x rSup { size 8{2} } }} over { size 12{y rSup { size 8{3} } } } } right ) rSup { size 8{2} } } {} a x b y 2 size 12{ left ( { { size 11{a rSup { size 8{ - x} } }} over { size 12{b rSup { size 8{ - y} } } } } right ) rSup { size 8{ - 2} } } {}

  • Weer behoort die eksponent aan beide die teller en die noemer.
  • Die reël: a b m = a m b m size 12{ left ( { { size 11{a}} over { size 11{b}} } right ) rSup { size 8{m} } size 12{ {}= { {a rSup { size 8{m} } } over { size 12{b rSup { size 8{m} } } } } }} {} en a m b m = a b m size 12{ { { size 11{a rSup { size 8{m} } }} over { size 12{b rSup { size 8{m} } } } } size 12{ {}= left ( { {a} over { size 12{b} } } right ) rSup { size 8{m} } }} {} bv. 2 3 3 = 2 3 3 3 = 8 27 size 12{ left ( { {2} over {3} } right ) rSup { size 8{3} } = { {2 rSup { size 8{3} } } over {3 rSup { size 8{3} } } } = { {8} over {"27"} } } {} en a 2x b x = a 2 x b x = a 2 b x size 12{ { { size 11{a rSup { size 8{2x} } }} over { size 12{b rSup { size 8{x} } } } } = { { left ( size 11{a rSup { size 8{2} } } right ) rSup { size 8{x} } } over { size 12{b rSup { size 8{x} } } } } size 12{ {}= left ( { {a rSup { size 8{2} } } over { size 12{b} } } right ) rSup { size 8{x} } }} {}

einde van KLASWERK

TUTORIAAL

  • Pas hierdie reëls saam toe om die volgende uitdrukkings te vereenvoudig — sonder ’n sakrekenaar.

1. a 5 a 7 a a 8 size 12{ { { size 11{a rSup { size 8{5} } } size 12{ times }a rSup { size 8{7} } } over { size 12{a size 12{ times }a rSup { size 8{8} } } } } } {}

2. x 3 y 4 x 2 y 5 x 4 y 8 size 12{ { { size 11{x rSup { size 8{3} } } size 12{ times }y rSup { size 8{4} } size 12{ times }x rSup { size 8{2} } y rSup { size 8{5} } } over { size 12{x rSup { size 8{4} } y rSup { size 8{8} } } } } } {}

3. a 2 b 3 c 2 ac 2 2 bc 2 size 12{ left ( size 11{a rSup { size 8{2} } b rSup { size 8{3} } c} right ) rSup { size 8{2} } size 12{ times left ( bold "ac" rSup { size 8{2} } right ) rSup { size 8{2} } } size 12{ times left ( bold "bc" right ) rSup { size 8{2} } }} {}

4. a 3 b 2 a 3 a b 5 b 4 ab 3 size 12{ size 11{a rSup { size 8{3} } } size 12{ times }b rSup { size 8{2} } size 12{ times { {a rSup { size 8{3} } } over { size 12{a} } } } size 12{ times { {b rSup { size 8{5} } } over { size 12{b rSup { size 8{4} } } } } } size 12{ times left ( bold "ab" right ) rSup { size 8{3} } }} {}

5. 2 xy × 2 x 2 y 4 2 x 2 y 3 2 xy 3 size 12{ left (2 size 11{ bold "xy"} right ) times left (2 size 11{x rSup { size 8{2} } y rSup { size 8{4} } } right ) rSup { size 8{2} } size 12{ times left ( { { left (x rSup { size 8{2} } y right ) rSup { size 8{3} } } over { size 12{ left (2 bold "xy" right ) rSup { size 8{3} } } } } right )}} {}

6. 2 3 × 2 2 × 2 7 8 × 4 × 8 × 2 × 8 size 12{ { {2 rSup { size 8{3} } times 2 rSup { size 8{2} } times 2 rSup { size 8{7} } } over {8 times 4 times 8 times 2 times 8} } } {}

einde van TUTORIAAL

Nog ’n paar reëls

KLASWERK

1 Beskou hierdie geval: = a 5 3 = a 2 a 5 a 3 size 12{ { { size 11{a rSup { size 8{5} } }} over { size 12{a rSup { size 8{3} } } } } size 12{ {}=}a rSup { size 8{5 - 3} } size 12{ {}=}a rSup { size 8{2} } } {}

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Wiskunde graad 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11055/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 9' conversation and receive update notifications?

Ask