<< Chapter < Page Chapter >> Page >

a 0 = 1 size 12{a rSup { size 8{0} } `=`1} {} , ( a 0 ) size 12{` \( a<>0 \) } {}

For example, x 0 = 1 and ( 1,000,000 ) 0 = 1 size 12{x rSup { size 8{0} } `=``1" and " \( "1,000,000" \) rSup { size 8{0} } `=``1} {} .

Note that the base must be a non-zero value. 0 0 is called an indeterminate number, and has no value. This is because 0 0 = 0/0. If one considers 0 = 0 × n (where n can be any number) then it follows that 0/0 = n , where n can be any number – meaning the value of 0/0 cannot be determined.

Examples: application using exponential law 1

  1. 16 0 = 1 size 12{"16" rSup { size 8{0} } =``1} {}
  2. 16 a 0 = 16 size 12{"16"a rSup { size 8{0} } =``"16"} {}
  3. ( 16 + a ) 0 = 1 size 12{ \( "16"+a \) rSup { size 8{0} } =``1} {}
  4. ( 16 ) 0 = 1 size 12{ \( - "16" \) rSup { size 8{0} } =``1} {}
  5. 16 0 = 1 size 12{ - "16" rSup { size 8{0} } =`` - 1} {}

Exponential law 2

Our definition of exponential notation shows that:

a m × a n = a m + n size 12{a rSup { size 8{m} } ` times `a rSup { size 8{n} } `=`a rSup { size 8{m+n} } } {}

That is:

a m a n = 1 a a size 12{a rSup { size 8{m} } cdot a rSup { size 8{n} } `=``1` cdot `a` cdot ` dotslow ` cdot `a } {}  ( m times) 1 a a size 12{` cdot `1` cdot `a` cdot ` dotslow ` cdot ` ital "a "} {}   ( n times)

             = 1 a a size 12{ {}= `1` cdot `a` cdot ` dotslow ` cdot `a" "``} {}     ( m + n times)

             = a m + n size 12{ {}= ital " a" rSup { size 8{m+n} } } {}

For example:

2 7 2 3 = ( 2 2 2 2 2 2 2 ) ( 2 2 2 ) = 2 10 = 2 7 + 3 alignl { stack { size 12{`2 rSup { size 8{7} } cdot 2 rSup { size 8{3} } = \( 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2 \) ital " " \( 2 cdot 2 cdot 2 \) } {} #`= 2 rSup { size 8{"10"} } {} # `= 2 rSup { size 8{7+3} } {}} } {}

This simple law illustrates the reason exponentials were originally invented. In the days before calculators, all multiplication had to be done by hand with a pencil and a pad of paper. Multiplication takes a very long time to do and is very tedious. Adding numbers, however, is easy and quick. This law says that adding the exponents of two exponential numbers (of the same base) is the same as multiplying the two numbers together. This means that, for certain numbers, there is no need to actually multiply the numbers together in order to find their multiple. This saved mathematicians a lot of time.

Examples: application using exponential law 2

  1. x 2 x 5 = x 7 size 12{x rSup { size 8{2} } cdot x rSup { size 8{5} } = ital " x" rSup { size 8{7} } } {}
  2. 2x 3 y 5x 2 y 7 = 10 x 5 y 8 size 12{2x rSup { size 8{3} } y cdot 5x rSup { size 8{2} } y rSup { size 8{7} } = "10"x rSup { size 8{5} } y rSup { size 8{8} } } {}
  3. 2 3 2 4 = 2 7 size 12{2 rSup { size 8{3} } cdot 2 rSup { size 8{4} } = 2 rSup { size 8{7} } } {}    (Note that the base (2) stays the same.)
  4. 3 3 2a 3 2 = 3 2a + 3 size 12{3 cdot 3 rSup { size 8{2a} } cdot 3 rSup { size 8{2} } =3 rSup { size 8{2a+3} } } {}

Exponential law 3

a m ÷ a n = a m n size 12{a rSup { size 8{m} } `` div ``a rSup { size 8{n} } `=`a rSup { size 8{m - n} } } {}

We know from Law 2 that a m + n size 12{a rSup { size 8{m+n} } } {} is base a multiplied by itself m times plus a multiplied by itself n times. Law 3 extends this to the case where an exponent is negative.

a m a n = a a a a a a a a size 12{ { {a rSup { size 8{m} } } over {a rSup { size 8{n} } } } `=` { {`a cdot a cdot a` dotsaxis ` cdot a`} over {a cdot a cdot a` dotsaxis ` cdot a} } } {} ( m times ) ( n times ) size 12{ { {` \( m`"times" \) `} over { \( n`"times" \) } } } {}

By factoring out a n size 12{a rSup { size 8{n} } } {} from both numerator and denominator, we are left with

     = a a a a a a a a size 12{``=` { {`a cdot a cdot a dotsaxis cdot a`} over {`a cdot a cdot a dotsaxis cdot a`} } } {} ( m times ) ( n times ) size 12{ { {` \( m`"times" \) `} over { \( n`"times" \) } } } {} a a a a a a a a size 12{ { { - `a cdot a cdot a` dotsaxis cdot a} over { - `a cdot a cdot a` dotsaxis cdot a} } } {} ( n times ) ( n times ) size 12{ { {` \( n`"times" \) `} over { \( n`"times" \) } } } {}

     = a a a a size 12{``=`a cdot a cdot a dotsaxis cdot a`} {}    ( m n times)

     = a m n size 12{``=`a rSup { size 8{m - n} } } {}

For example,

2 7 ÷ 2 3 = 2 2 2 2 2 2 2 2 2 2 = 2 2 2 2 = 2 4 = 2 7 3 alignl { stack { size 12{`2 rSup { size 8{7} } div 2 rSup { size 8{3} } `=` { {2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2} over {2 cdot 2 cdot 2} } } {} #```````````=``2 cdot 2 cdot 2 cdot 2 {} # ```````````=``2 rSup { size 8{4} } {} #```````````=``2 rSup { size 8{7 - 3} } {} } } {}

Examples: exponential law 3

  1. a 6 a 2 = a 6 2 = a 4 size 12{ { {a rSup { size 8{6} } } over {a rSup { size 8{2} } } } `=`a rSup { size 8{6 - 2} } `=`a rSup { size 8{4} } } {}
  2. 3 2 3 6 = 3 2 6 = 3 4 = 1 3 4 size 12{ { {3 rSup { size 8{2} } } over {3 rSup { size 8{6} } } } ``=``3 rSup { size 8{2 - 6} } ``=``3 rSup { size 8{ - 4} } `=` { {1} over {3 rSup { size 8{4} } } } ```} {}    (Always give the final answer with a positive index)
  3. 32 a 2 4a 8 = 8a 6 = 8 a 6 size 12{ { {"32"a rSup { size 8{2} } } over {4a rSup { size 8{8} } } } `=`8a rSup { size 8{ - 6} } `=` { {8} over {a rSup { size 8{6} } } } } {}
  4. a 3x a 4 = a 3x 4 size 12{ { {a rSup { size 8{3x} } } over {a rSup { size 8{4} } } } `=`a rSup { size 8{3x - 4} } } {}

Exponential law 4

a n = 1 a n , a 0 size 12{a rSup { size 8{ - n} } `= { {1} over {a rSup { size 8{n} } } } ,~`a<>0} {}

Our definition of exponential notation for a negative exponent shows that

a n = 1 ÷ a ÷ ÷ a size 12{a rSup { size 8{ - n} } `=`1` div `a` div ` dotsaxis ` div `a} {}    ( n times)

       = 1 1 a a size 12{ {}=` { {1} over {1` cdot `a` cdot ` dotsaxis ` cdot `a} } } {} ( n times ) size 12{ { {``} over { \( n`"times" \) } } } {}  

       = 1 a n size 12{ {}=` { {1} over {a rSup { size 8{n} } } } } {}

The minus sign in the exponent is just another way of writing that the whole exponential number is to be divided instead of multiplied.

For example, starting with Law 3, take the case of a m n size 12{a rSup { size 8{m - n} } } {} , but where  n>m :

2 2 9 = 2 2 2 9 = 2 2 2 2 2 2 2 2 2 2 2 = 1 2 2 2 2 2 2 2 = 1 2 7 = 2 7 alignl { stack { size 12{`2 rSup { size 8{2 - 9} } `=` { {2 rSup { size 8{2} } } over {2 rSup { size 8{9} } } } `} {} #```````=` { {2` cdot `2} over {2` cdot `2` cdot `2` cdot `2` cdot `2` cdot `2` cdot `2` cdot `2` cdot `2} } {} # ```````= { {1} over {2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2 cdot 2} } {} #```````= { {1} over {2 rSup { size 8{7} } } } {} # ```````=`2 rSup { size 8{ - 7} } {}} } {}

Examples: exponential law 4

  1. 2 2 = 1 2 2 = 1 4 size 12{2 rSup { size 8{ - 2} } = { {1} over {2 rSup { size 8{2} } } } = { {1} over {4} } } {}
  2. 2 2 3 2 = 1 2 2 3 2 = 1 36 size 12{ { {2 rSup { size 8{ - 2} } } over {3 rSup { size 8{2} } } } = { {1} over {2 rSup { size 8{2} } cdot 3 rSup { size 8{2} } } } = { {1} over {"36"} } } {}
  3. 2 3 3 = 3 2 3 = 27 8 size 12{ left ( { {2} over {3} } right ) rSup { size 8{ - 3} } = left ( { {3} over {2} } right ) rSup { size 8{3} } = { {"27"} over {8} } } {}
  4. m n 4 = mn 4 size 12{ { {m} over {n rSup { size 8{ - 4} } } } = ital "mn" rSup { size 8{4} } } {}
  5. a 3 x 4 a 5 x 2 = x 4 x 2 a 3 a 5 = x 6 a 8 size 12{ { {a rSup { size 8{ - 3} } cdot x rSup { size 8{4} } } over {a rSup { size 8{5} } cdot x rSup { size 8{ - 2} } } } = { {x rSup { size 8{4} } cdot x rSup { size 8{2} } } over {a rSup { size 8{3} } cdot a rSup { size 8{5} } } } = { {x rSup { size 8{6} } } over {a rSup { size 8{8} } } } } {}

Exponential law 5

( ab ) n = a n b n size 12{ \( ital "ab" \) rSup { size 8{n} } `=`a rSup { size 8{n} } b rSup { size 8{n} } } {}

The order in which two real numbers are multiplied together does not matter.

Therefore,

( ab ) n = a b a b a b a b size 12{ \( ital "ab" \) rSup { size 8{n} } `=``a cdot b cdot a cdot b cdot a cdot b cdot `` dotsaxis ` cdot `a cdot b} {}     ( n times)

         = a a a size 12{`=``a` cdot `a` cdot ` dotslow ` cdot `a} {}  ( n times) b b b size 12{` cdot `b` cdot `b` cdot ` dotslow ` cdot `b} {}  ( n times)

          = a n b n size 12{ {}=``a rSup { size 8{n} } b rSup { size 8{n} } } {}

For example:

2 3 4 = ( 2 3 ) ( 2 3 ) ( 2 3 ) ( 2 3 ) = ( 2 2 2 2 ) ( 3 3 3 3 ) = 2 4 3 4 = 2 4 3 4 alignl { stack { size 12{`2` cdot 3 rSup { size 8{4} } = \( 2 cdot 3 \) cdot \( 2 cdot 3 \) cdot \( 2 cdot 3 \) cdot \( 2 cdot 3 \) } {} #`=`` \( 2 cdot 2 cdot 2 cdot 2 \) ` cdot ` \( 3 cdot 3 cdot 3 cdot 3 \) {} # `= 2 rSup { size 8{4} } ` cdot `3 rSup { size 8{4} } {} #`= 2 rSup { size 8{4} } 3 rSup { size 8{4} } {} } } {}

Examples: exponential law 5

  1. ( 2x 2 y ) 3 = 2 3 x 2 × 3 y 3 = 8x 6 y 3 size 12{ \( 2x rSup { size 8{2} } y \) rSup { size 8{3} } `=`2 rSup { size 8{3} } x rSup { size 8{2 times 3} } y rSup { size 8{3} } `=`8x rSup { size 8{6} } y rSup { size 8{3} } } {}
  2. 7a b 3 2 = 49 a 2 b 6 size 12{ left ( { {7a} over {b rSup { size 8{3} } } } right )` rSup { size 8{2} } `=`` { {"49"a rSup { size 8{2} } } over {b rSup { size 8{6} } } } `} {}
  3. ( 5a n 4 ) 3 = 125 a 3n 12 size 12{ \( 5a rSup { size 8{n - 4} } \) rSup { size 8{3} } `=`"125"a rSup { size 8{3n - "12"} } } {}

Exponential law 6

( a m ) n = a mn size 12{ \( a rSup { size 8{m} } \) rSup { size 8{n} } =a rSup { size 8{ ital "mn"} } } {}

We can find the exponential of an exponential just as well as we can for a number, because an exponential is a real number.

( a m ) n = a m a m a m a m size 12{ \( a rSup { size 8{m} } \) rSup { size 8{n} } `=``a rSup { size 8{m} } ` cdot `a rSup { size 8{m} } ` cdot a rSup { size 8{m} } ` cdot `` dotslow ` cdot `a rSup { size 8{m} } } {}     ( n times)

         = a a a size 12{`=``a cdot a cdot dotslow cdot ital "a " } {}       ( m × n times)

          = a mn size 12{ {}= ital " a" rSup { size 8{ ital "mn"} } } {}

For example:

( 2 2 ) 3 = ( 2 2 ) ( 2 2 ) ( 2 2 ) = ( 2 2 ) ( 2 2 ) ( 2 2 ) = 2 6 = 2 2 × 3 alignl { stack { size 12{`` \( 2 rSup { size 8{2} } \) rSup { size 8{3} } = \( 2 rSup { size 8{2} } \) cdot \( 2 rSup { size 8{2} } \) cdot \( 2 rSup { size 8{2} } \) } {} #``````````=`` \( 2 cdot 2 \) ` cdot ` \( 2 cdot 2 \) ` cdot ` \( 2 cdot 2 \) {} # ``````````= 2 rSup { size 8{6} } {} #``````````= 2 rSup { size 8{2 times 3} } {} } } {}

Examples: exponential law 6

  1. ( x 3 ) 4 = x 12 size 12{ \( x rSup { size 8{3} } \) rSup { size 8{4} } `=`x rSup { size 8{"12"} } } {}
  2. [ ( a 4 ) 3 ] 2 = a 24 size 12{ \[ \( a rSup { size 8{4} } \) rSup { size 8{3} } \] rSup { size 8{2} } `=``a rSup { size 8{"24"} } } {}
  3. ( 3 n + 3 ) 2 = 3 2n + 6 size 12{ \( 3 rSup { size 8{n+3} } \) rSup { size 8{2} } `=`3 rSup { size 8{2n+6} } } {}

Module review exercises

Write the following examples using exponential notation.

4 4 size 12{4` cdot `4} {}

4 2

Got questions? Get instant answers now!

12 12 size 12{"12"` cdot `"12"} {}

12 2

Got questions? Get instant answers now!

9 9 9 9 size 12{9` cdot `9` cdot `9` cdot `9} {}

9 4

Got questions? Get instant answers now!

10 10 10 10 10 10 size 12{"10"` cdot `"10"` cdot `"10"` cdot `"10"` cdot `"10"` cdot `"10"} {}

10 6

Got questions? Get instant answers now!

826 826 826 size 12{"826"` cdot `"826"` cdot `"826"} {}

826 3

Got questions? Get instant answers now!

3021 3021 3021 3021 size 12{"3021"` cdot `"3021"` cdot `"3021" cdot `"3021"} {}

3021 4

Got questions? Get instant answers now!

6 6 6 6 size 12{6` cdot `6` cdot `6` cdot dotsaxis ` cdot `6} {}     (85 factors of 6).

6 85

Got questions? Get instant answers now!

2 2 2 2 size 12{`2` cdot `2` cdot `2` cdot ` dotsaxis ` cdot `2} {}     (112 factors of 2).

2 112

Got questions? Get instant answers now!

For the next examples, expand the terms. (Do not find the actual values).

117 5

117 · 117 · 117 · 117 · 117

Got questions? Get instant answers now!

Determine the value of each of the powers.

Simplify as far as possible.

(2x) 3

2 3 · x 3 = 8x 3

Got questions? Get instant answers now!

(-2x) 3

(-2) 3 · x 3 = -8x 3

Got questions? Get instant answers now!

x 8 x 3 size 12{ { {x rSup { size 8{8} } } over {x rSup { size 8{3} } } } } {}

x 8 3 = x 5 size 12{`x rSup { size 8{8 - 3} } `=`x rSup { size 8{5} } } {}

Got questions? Get instant answers now!

25 x 2 5x 8 size 12{` { {"25"x rSup { size 8{2} } } over {5x rSup { size 8{8} } } } } {}

25 5 x 2 8 = 5x 6 = 5 x 6 size 12{` { {"25"} over {5} } x rSup { size 8{2 - 8} } `=`5x rSup { size 8{ - 6} } `=` { {5} over {x rSup { size 8{6} } } } } {}

Got questions? Get instant answers now!

(3 -1 +2 -1 ) -1

1 3 1 + 2 1 = 1 1 3 + 1 2 = 1 3 1 + 2 1 = 3 + 2 = 5 size 12{` { {1} over {3 rSup { size 8{ - 1} } `+`2 rSup { size 8{ - 1} } } } `=` { {1} over { { {1} over {3} } `+` { {1} over {2} } } } `=`1` cdot ` left ( { {3} over {1} } `+` { {2} over {1} } right )`=`3`+`2`=`5} {}

Got questions? Get instant answers now!

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic math textbook for the community college. OpenStax CNX. Jul 04, 2009 Download for free at http://cnx.org/content/col10726/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic math textbook for the community college' conversation and receive update notifications?

Ask