<< Chapter < Page Chapter >> Page >

Exercises 8.4

We wish to implement a dictionary by using direct addressing on a huge array. At the start, the array entries may contain garbage, and initializing the entire array is impractical because of its size. Describe a scheme for implementing a direct-address dictionary on a huge array. Each stored object should use O(1) space; the operations SEARCH, INSERT, and DELETE should take O(1) time each; and the initialization of the data structure should take O(1) time. (Hint: Use an additional stack, whose size is the number of keys actually stored in the dictionary, to help determine whether a given entry in the huge array is valid or not.)

Exercises 8.5

Suppose we use a hash function h to hash n distinct keys into an array T of length m. Assuming simple uniform hashing, what is the expected number of collisions? More precisely, what is the expected cardinality of {{k, l} : k ≠ l and h(k) = h(l)}?

Exercises 8.6

Demonstrate the insertion of the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 into a hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be h(k) = k mod 9.

Exercises 8.7

Professor Marley hypothesizes that substantial performance gains can be obtained if we modify the chaining scheme so that each list is kept in sorted order. How does the professor's modification affect the running time for successful searches, unsuccessful searches, insertions, and deletions?

Exercises 8.8

Suggest how storage for elements can be allocated and deallocated within the hash table itself by linking all unused slots into a free list. Assume that one slot can store a flag and either one element plus a pointer or two pointers. All dictionary and free-list operations should run in O(1) expected time. Does the free list need to be doubly linked, or does a singly linked free list suffice?

Exercises 8.9

Show that if |U|>nm, there is a subset of U of size n consisting of keys that all hash to the same slot, so that the worst-case searching time for hashing with chaining is Θ(n).

Exercises 8.10

Suppose we wish to search a linked list of length n, where each element contains a key k along with a hash value h(k). Each key is a long character string. How might we take advantage of the hash values when searching the list for an element with a given key?

Exercises 8.11

Suppose that a string of r characters is hashed into m slots by treating it as a radix-128 number and then using the division method. The number m is easily represented as a 32-bit computer word, but the string of r characters, treated as a radix-128 number, takes many words. How can we apply the division method to compute the hash value of the character string without using more than a constant number of words of storage outside the string itself?

Exercises 8.12

Consider a version of the division method in which h(k) = k mod m, where m = 2p - 1 and k is a character string interpreted in radix 2p. Show that if string x can be derived from string y by permuting its characters, then x and y hash to the same value. Give an example of an application in which this property would be undesirable in a hash function.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Data structures and algorithms. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10765/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Data structures and algorithms' conversation and receive update notifications?

Ask