<< Chapter < Page Chapter >> Page >
Се воведува мешан производ на три вектори и негови својства. Triple scalar product and properties

Мешан производ на три вектори

Мешаниот производ на три вектора е скалар кој се дефинира со следната дефини­ција:

Дефиниција. Мешан производ на векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} и c size 12{ {c} cSup { size 8{ rightarrow } } } {} е скалар кој се означува со ( a , b , c ) size 12{ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) } {} и се пресметува со

( a , b , c ) size 12{ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) } {} = a ( b × c ) size 12{ {a} cSup { size 8{ rightarrow } } cdot \( {b} cSup { size 8{ rightarrow } } times {c} cSup { size 8{ rightarrow } } \) } {} = ( a × b ) c size 12{ \( {a} cSup { size 8{ rightarrow } } times {b} cSup { size 8{ rightarrow } } \) cdot {c} cSup { size 8{ rightarrow } } } {} .

Својства на мешаниот производ

Мешаниот производ ги има следниве својства:

  1. Ако векторите се дадени со своите координати

a size 12{ {a} cSup { size 8{ rightarrow } } } {} = { x 1 , y 1 , z 1 }, b size 12{ {b} cSup { size 8{ rightarrow } } } {} = { x 2 , y 2 , z 2 }, c size 12{ {c} cSup { size 8{ rightarrow } } } {} = { x 3 , y 3 , z 3 },

тогаш мешаниот производ се пресметува преку троредната детерминанта

( a , b , c ) size 12{ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) } {} = x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 size 12{ lline matrix { x rSub { size 8{1} } {} # y rSub { size 8{1} } {} # z rSub { size 8{1} } {} ##x rSub { size 8{2} } {} # y rSub { size 8{2} } {} # z rSub { size 8{2} } {} ## x rSub { size 8{3} } {} # y rSub { size 8{3} } {} # z rSub { size 8{3} } {}} rline } {} .

Бидејќи мешаниот производ се пресметува преку детерминанта од трет ред, неговите својства ќе следуваат од својствата на детерминатите.

Затоа:

2. Важи антикомутативниот закон т.е се менува знакот на мешаниот производ ако два множители си ги сменат местата и затоа

( a , b , c ) = ( a , c , b ) size 12{ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) = - \( {a} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } \) } {} ;

3. Важи дистрибутивниот закон

( a + b , c , d ) = ( a , c , d ) + ( b , c , d ) size 12{ \( {a} cSup { size 8{ rightarrow } } + {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } , {d} cSup { size 8{ rightarrow } } \) = \( {a} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } , {d} cSup { size 8{ rightarrow } } \) + \( {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } , {d} cSup { size 8{ rightarrow } } \) } {} ;

4. Множење со скалар λ size 12{λ} {}

λ ( a , b , c ) = ( λ a , b , c ) = ( a , λ b , c ) = ( a , b , λc ) size 12{λ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) = \( λ {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) = \( {a} cSup { size 8{ rightarrow } } ,λ {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) = \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {λc} cSup { size 8{ rightarrow } } \) } {} ;

5. Ако било кои два од трите вектори во мешаниот производ се колинеарни (паралелни), тогаш ( a , b , c ) = 0 size 12{ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) =0} {} ;

6. Ако трите вектори се компланарни (лежат во иста рамнина), тогаш

( a , b , c ) = 0 size 12{ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) =0} {} ;

7. Геометриско толкување на мешаниот производ : апсолутната вредност од мешаниот производ е волумен на паралелопипед образуван од трите вектори со заеднички почеток, а секој вектор претставува раб на така образуваниот паралелопипед. Затоа волуменот на паралелопипед со рабови a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} и c size 12{ {c} cSup { size 8{ rightarrow } } } {} е

V паралелопипед = ( a , b , c ) size 12{V rSub { size 8{ ital "паралелопипед"} } = \lline \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) \lline } {} ;

8. Волуменот на тристрана пирамида образувана од векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} , b size 12{ {b} cSup { size 8{ rightarrow } } } {} и c size 12{ {c} cSup { size 8{ rightarrow } } } {} е

V пирамида = 1 6 size 12{V rSub { size 8{ ital "пирамида"} } = { {1} over {6} } } {} ( a , b , c ) size 12{ \lline \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) \lline } {} ;

Пример 1

Дадени се векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} = {3, 2, 1}, b size 12{ {b} cSup { size 8{ rightarrow } } } {} = {1, 1, 2} и c size 12{ {c} cSup { size 8{ rightarrow } } } {} = {1, 3, 5}. Да се пресмета:

  1. Волуменот на паралелопипедот образуван од овие вектори;

б) Плоштината на ѕидот образуван од векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} и c size 12{ {c} cSup { size 8{ rightarrow } } } {} .

Решение

а) Се пресметува мешаниот производ

( a , b , c ) size 12{ \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) } {} = 3 2 1 1 1 2 1 3 5 = 9 + 3 + 4 1 6 18 = 9 size 12{ lline ` matrix { 3 {} # 2 {} # 1 {} ##1 {} # 1 {} # 2 {} ## 1 {} # 3 {} # 5{}} ` rline =9+3+4 - 1 - 6 - "18"= - 9} {} .

Волуменот на паралелопипедот е

V паралелопипед = ( a , b , c ) = 9 size 12{V rSub { size 8{ ital "паралелопипед"} } = \lline \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) \lline = \lline - 9 \lline } {} = 9.

б) Плоштината на паралелограмот меѓу векторите a size 12{ {a} cSup { size 8{ rightarrow } } } {} и c size 12{ {c} cSup { size 8{ rightarrow } } } {} се пресметува со

P паралелограм size 12{P rSub { size 8{ ital "паралелограм"} } } {} = | a × c size 12{ {a} cSup { size 8{ rightarrow } } times {c} cSup { size 8{ rightarrow } } } {} |.

Од векторскиот производ

a × c size 12{ {a} cSup { size 8{ rightarrow } } times {c} cSup { size 8{ rightarrow } } } {} = i j k 3 2 1 1 3 5 = 10 i + j + 9 k 2 k 3 i 9 j = 7 i 8 j + 7 k size 12{ lline ` matrix { {i} cSup { size 8{ rightarrow } } {} # {j} cSup { size 8{ rightarrow } } {} # {k} cSup { size 8{ rightarrow } } {} ##3 {} # 2 {} # 1 {} ## 1 {} # 3 {} # 5{}} ` rline `="10" {i} cSup { size 8{ rightarrow } } + {j} cSup { size 8{ rightarrow } } +9 {k} cSup { size 8{ rightarrow } } - 2 {k} cSup { size 8{ rightarrow } } - 3 {i} cSup { size 8{ rightarrow } } - 9 {j} cSup { size 8{ rightarrow } } =7 {i} cSup { size 8{ rightarrow } } - 8 {j} cSup { size 8{ rightarrow } } +7 {k} cSup { size 8{ rightarrow } } } {} ,

следува дека

P паралелограм size 12{P rSub { size 8{ ital "паралелограм"} } } {} = | a × c size 12{ {a} cSup { size 8{ rightarrow } } times {c} cSup { size 8{ rightarrow } } } {} | = | { 7, 8,7 } size 12{ lbrace 7, - 8,7 rbrace } {} | = 7 2 + ( 8 ) 2 + 7 2 = 162 . size 12{ sqrt {7 rSup { size 8{2} } + \( - 8 \) rSup { size 8{2} } +7 rSup { size 8{2} } } = sqrt {"162"} "." } {}

Пример 2

Да се покаже дека ( a + 3 b + c , 2 a b , a + c ) = 6 ( a , b , c ) size 12{ \( {a} cSup { size 8{ rightarrow } } +3 {b} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) = - 6 \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) } {} .

Решение

За решавање на оваа задача, се користат својствата 2, 3, 4 и 5 за мешан производ. Затоа најпрво се применува дистрибутивниот закон (својство 3) за првиот множител,

( a + 3 b + c , 2 a b , a + c ) = ( a , 2 a b , a + c ) + ( 3 b , 2 a b , a + c ) + + ( c , 2 a b , a + c ) = alignl { stack { size 12{ \( {a} cSup { size 8{ rightarrow } } +3 {b} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) = \( {a} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) + \( 3 {b} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) +{}} {} #+ \( {c} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) ={} {} } } {}

па за вториот и за третиот множител:

= ( a , 2 a , a + c ) + ( a , b , a + c ) + ( 3 b , 2 a , a + c ) + + ( 3 b , b , a + c ) + ( c , 2 a , a + c ) + ( c , b , a + c ) = alignl { stack { size 12{ {}= \( {a} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) + \( {a} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) + \( 3 {b} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) +{}} {} #+ \( 3 {b} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) + \( {c} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) + \( {c} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } + {c} cSup { size 8{ rightarrow } } \) ={} {} } } {}
= ( a , 2 a , a ) + ( a , 2 a , c ) + ( a , b , a ) + ( a , b , c ) + + ( 3 b , 2 a , a ) + ( 3 b , 2 a , c ) + ( 3 b , b , a ) + ( 3 b , b , c ) + alignl { stack { size 12{ {}= \( {a} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } \) + \( {a} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) + \( {a} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } \) + \( {a} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) +{}} {} #+ \( 3 {b} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } \) + \( 3 {b} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) + \( 3 {b} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } \) + \( 3 {b} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) +{} {} } } {}
+ ( c , 2 a , a ) + ( c , 2 a , c ) + ( c , b , a ) + ( c , b , c ) = size 12{+ \( {c} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } \) + \( {c} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) + \( {c} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } \) + \( {c} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) ={}} {}

потоа се применува својтвото 5 и затоа сите мешани производи со два исти множители се нула, а потоа се применуваат и својствата 2 и 4

= ( a , b , c ) + ( 3 b , 2 a , c ) + ( c , b , a ) = ( a , b , c ) + 6 ( b , a , c ) ( c , b , a ) = ( a , b , c ) 6 ( a , b , c ) + ( a , b , c ) = 6 ( a , b , c ) , alignl { stack { size 12{ {}= \( {a} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) + \( 3 {b} cSup { size 8{ rightarrow } } ,2 {a} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) + \( {c} cSup { size 8{ rightarrow } } , - {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } \) ={}} {} #= - \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) +6 \( {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) - \( {c} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {a} cSup { size 8{ rightarrow } } \) ={} {} # = - \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) - 6 \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) + \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) ={} {} #= - 6 \( {a} cSup { size 8{ rightarrow } } , {b} cSup { size 8{ rightarrow } } , {c} cSup { size 8{ rightarrow } } \) , {} } } {}

што и требаше да се докаже. ◄

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Векторска алгебра. OpenStax CNX. Mar 11, 2009 Download for free at http://cnx.org/content/col10672/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Векторска алгебра' conversation and receive update notifications?

Ask