<< Chapter < Page Chapter >> Page >

Second, and perhaps more importantly for our purposes, we can use the known specific heat of water to measurethe heat released in any chemical reaction. To analyze a previous example, we observed that the combustion of 1.0g of methane gasreleased sufficient heat to increase the temperature of 1000g of water by 13.3°C. The heat capacity of 1000g of water must be 1000 g 4.184 J g ° C 4184 J ° C . Therefore, by , elevating the temperature of 1000g of water by 13.3°C must require 55,650 J 55.65 kJ of heat. Therefore, burning 1.0g of methane gas produces exactly 55.65kJ of heat.

The method of measuring reaction energies by capturing the heat evolved in a water bath and measuring thetemperature rise produced in that water bath is called calorimetry . This method is dependent on the equivalence of heat and work as transfers of energy, and on thelaw of conservation of energy. Following this procedure, we can straightforwardly measure the heat released or absorbed in anyeasily performed chemical reaction. For reactions which are difficult to initiate or which occur only under restrictedconditions or which are exceedingly slow, we will require alternative methods.

Observation 2: hess' law of reaction energies

Hydrogen gas, which is of potential interest nationally as a clean fuel, can be generated by the reaction ofcarbon (coal) and water:

C ( s ) + 2 H 2 O ( g ) C O 2 ( g ) + 2 H 2 ( g )

Calorimetry reveals that this reaction requires the input of 90.1kJ of heat for every mole of C ( s ) consumed. By convention, when heat is absorbed during a reaction, we consider the quantity of heat to be a positive number: inchemical terms, q 0 for an endothermic reaction. When heat is evolved, the reaction is exothermic and q 0 by convention.

It is interesting to ask where this input energy goes when the reaction occurs. One way to answer thisquestion is to consider the fact that the reaction converts one fuel, C ( s ) , into another, H 2 ( g ) . To compare the energy available in each fuel, we can measure theheat evolved in the combustion of each fuel with one mole of oxygen gas. We observe that

C ( s ) + O 2 ( g ) C O 2 ( g )

produces 393.5kJ for one mole of carbon burned; hence q -393.5 kJ . The reaction

2 H 2 ( g ) + O 2 ( g ) 2 H 2 O ( g )

produces 483.6kJ for two moles of hydrogen gas burned, so q -483.6 kJ . It is evident that more energy is available from combustion of thehydrogen fuel than from combustion of the carbon fuel, so it is not surprising that conversion of the carbon fuel to hydrogen fuelrequires the input of energy.

Of considerable importance is the observation that the heat input in , 90.1kJ, is exactly equal to the difference between the heat evolved, -393.5kJ, in the combustion of carbon and the heat evolved, -483.6kJ, in the combustion of hydrogen . This is not a coincidence: if we take the combustion of carbon and add to it the reverse of the combustion of hydrogen , we get C ( s ) + O 2 ( g ) C O 2 ( g ) 2 H 2 O ( g ) 2 H 2 ( g ) + O 2 ( g )

C ( s ) + O 2 ( g ) + 2 H 2 O ( g ) C O 2 ( g ) + 2 H 2 ( g ) + O 2 ( g )

Canceling the O 2 ( g ) from both sides, since it is net neither a reactant nor product, is equivalent to . Thus, taking the combustion of carbon and "subtracting" the combustion of hydrogen (or more accurately, adding the reverse of the combustion of hydrogen ) yields . And, the heat of the combustion of carbon minus the heat of the combustion of hydrogen equals the heat of .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, General chemistry i. OpenStax CNX. Jul 18, 2007 Download for free at http://cnx.org/content/col10263/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General chemistry i' conversation and receive update notifications?

Ask