<< Chapter < Page Chapter >> Page >

Recall that the electron orbitals in the hydrogen atom are described by a set of quantum numbers. One of these quantum numbers is related to the symmetry or shape of the atomic orbital and is generally depicted by a letter. Recall that an “s” orbital is spherical in shape, and a “p” orbital has two lobes aligned along one axis. Similarly, the molecular orbitals for the H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} molecular ion are described by a set of numbers which give the symmetry (or shape) of the orbital. For our purposes, we need only one of these descriptors, based on the symmetry of the orbital along the bond: if the molecular orbital has the symmetry of a cylinder, we refer to it as a “ σ size 12{σ} {} orbital.” The orbital in Fig. 2c satisfies this condition.

We conclude that chemical bonding results from an electron in a molecular orbital which has substantial probability for the electron to be between two nuclei. However, this example illustrates chemical bonding with a single electron. Our rules of valence indicate that bonding typically occurs with a pair of electrons, rather than a single electron. Furthermore, this model of bonding does not tell us how to handle molecules with many electrons (say, F 2 size 12{F rSub { size 8{2} } } {} ) where most of the electrons do not participate in the bonding at all.

Observation 2: bonding and non-bonding in diatomic molecules

We now consider molecules with more than one electron. These are illustrated most easily by diatomic molecules (molecules with only two atoms) formed by like atoms, beginning with the hydrogen molecule, H 2 size 12{H rSub { size 8{2} } } {} . The most direct experimental observation of a chemical bond is the amount of energy required to break it. This is called the bond energy, or somewhat less precisely, the bond strength. Experimentally, it is observed that the bond energy of the hydrogen molecule H 2 size 12{H rSub { size 8{2} } } {} is 458 kJ/mol. By contrast, the bond energy of the H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} molecular ion is 269 kJ/mol. Therefore, the bond in H 2 size 12{H rSub { size 8{2} } } {} is stronger than the bond in H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} . Thus, the pair of shared electrons in H 2 size 12{H rSub { size 8{2} } } {} generates a stronger attractive force than does the single electron in H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} .

Before deducing an explanation of this in terms of electron orbitals, we first recall the valence shell electron pair description of the bonding in H 2 size 12{H rSub { size 8{2} } } {} . Each hydrogen atom has a single electron. By sharing these two electrons, each hydrogen atom can fill its valence shell, attaining the electron configuration of helium.

How does this translate into the electron orbital picture of electron sharing that we have just described for the H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} molecular ion? There are two ways to deduce the answer to this question, and, since they are both useful, we will work through them both. The first way is to imagine that we form an H 2 size 12{H rSub { size 8{2} } } {} molecule by starting with an H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} molecular ion and adding an electron to it. As a simple approximation, we might imagine that the first electron’s probability distribution (its orbital) is not affected by the addition of the second electron. The second electron must have a probability distribution describing its location in the molecule as well. We recall that, in atoms, it is possible to put two electrons into a single electron orbital, provided that the two electrons have opposite values of the spin quantum number, ms. Therefore, we expect this to be true for molecules as well, and we place the added second electron in H 2 size 12{H rSub { size 8{2} } } {} into the same σ size 12{σ} {} orbital as the first. This results in two electrons in the region between the two nuclei, thus adding to the force of attraction of the two nuclei into the bond. This explains our observation that the bond energy of H 2 size 12{H rSub { size 8{2} } } {} is almost (although not quite) twice the bond energy of H 2 + size 12{H rSub { size 8{2} } rSup { size 8{+{}} } } {} .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry. OpenStax CNX. Dec 06, 2007 Download for free at http://cnx.org/content/col10264/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry' conversation and receive update notifications?

Ask