<< Chapter < Page Chapter >> Page >

In 1976, S. Winograd [link] presented a new DFT algorithm which had significantly fewer multiplications than the Cooley-TukeyFFT which had been published eleven years earlier. This new Winograd Fourier Transform Algorithm (WFTA) is based on the type- one indexmap from Multidimensional Index Mapping with each of the relatively prime length short DFT's calculated by very efficient special algorithms. It isthese short algorithms that this section will develop. They use the index permutation of Rader described in the another module toconvert the prime length short DFT's into cyclic convolutions. Winograd developed a method for calculating digital convolution withthe minimum number of multiplications. These optimal algorithms are based on the polynomial residue reduction techniques of Polynomial Description of Signals: Equation 1 to break the convolution into multiple small ones [link] , [link] , [link] , [link] , [link] , [link] .

The operation of discrete convolution defined by

y ( n ) = k h ( n - k ) x ( k )

is called a bilinear operation because, for a fixed h ( n ) , y ( n ) is a linear function of x ( n ) and for a fixed x ( n ) it is a linear function of h ( n ) . The operation of cyclic convolution is the same but with all indices evaluated modulo N .

Recall from Polynomial Description of Signals: Equation 3 that length-N cyclic convolution of x ( n ) and h ( n ) can be represented by polynomial multiplication

Y ( s ) = X ( s ) H ( s ) mod ( s N - 1 )

This bilinear operation of [link] and [link] can also be expressed in terms of linear matrix operators and a simpler bilinearoperator denoted by o which may be only a simple element-by-element multiplication of the two vectors [link] , [link] , [link] . This matrix formulation is

Y = C [ A X o B H ]

where X , H and Y are length-N vectors with elements of x ( n ) , h ( n ) and y ( n ) respectively. The matrices A and B have dimension M x N , and C is N x M with M N . The elements of A , B , and C are constrained to be simple; typically small integers or rational numbers. It will be thesematrix operators that do the equivalent of the residue reduction on the polynomials in [link] .

In order to derive a useful algorithm of the form [link] to calculate [link] , consider the polynomial formulation [link] again. To use the residue reduction scheme, the modulus is factored into relatively prime factors. Fortunately the factoringof this particular polynomial, s N - 1 , has been extensively studied and it has considerable structure. When factored over the rationals,which means that the only coefficients allowed are rational numbers, the factors are called cyclotomic polynomials [link] , [link] , [link] . The most interesting property for our purposes is that most of the coefficients of cyclotomic polynomialsare zero and the others are plus or minus unity for degrees up to over one hundred. This means the residue reduction will generallyrequire no multiplications.

The operations of reducing X ( s ) and H ( s ) in [link] are carried out by the matrices A and B in [link] . The convolution of the residue polynomials is carried out by the o operator and the recombination by the CRT is done by the C matrix. More details are in [link] , [link] , [link] , [link] , [link] but the important fact is the A and B matrices usually contain only zero and plus or minus unity entries and the C matrix only contains rational numbers. The only general multiplications are those represented by o . Indeed, in the theoretical results from computational complexity theory,these real or complex multiplications are usually the only ones counted. In practical algorithms, the rational multiplicationsrepresented by C could be a limiting factor.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fast fourier transforms. OpenStax CNX. Nov 18, 2012 Download for free at http://cnx.org/content/col10550/1.22
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fast fourier transforms' conversation and receive update notifications?

Ask