<< Chapter < Page Chapter >> Page >
  1. NHIỄU LƯỢNG TỬ TRONG BIẾN ĐIỆU DELTA (quantization noise in delta modulation)

Một lần nữa ta định nghĩa lỗi lượng tử là hiệu số giữa tín hiệu gốc và sự lượng tử tương đương (hàmbậ thang):

Giả sử rằng tốc độ lấy mẫu và kích thước từng bậc, được chọn trước để tránh quá tải. Với những điều kiện này, biên độ của nhiễu lượng tử không bao giờ vượt quá kích thước bậc. Để đơn giản, ta giả sử tất cả biên độ tín hiệu thì bằng nhau, ta kết luận rằng lỗi được phân bố đều đặn qua phạm vi giữa - và + như được trình bày ở hình 7.41. Giá trị trung bình bình phương của nhiễu lượng tử được cho bởi:

p(e)e
Trong các hệ thống viễn thông số đang xây dựng, một câu hỏi hợp lý đặt ra là sử dụng PCM hay DM trong kỹ thuật mã hoá nguồn. Ta sẽ lo lắng về nhiều yếu tố: tốc độ bit truyền đòi hỏi về băng thông hệ thống, độ tin cậy, nhiễu lượng tử và sự ảnh hưởng của lỗi truyền. Ta nhận thấy công thức đơn giản của SNR liên hệ với PCM và với DM. Đường thẳng ở dưới đáy là những trường hợp chắc chắn mà DM sẽ cung cấp SNR giống như PCM với tốc độ truyền bit thấp. Trong những trường hợp khác, điều ngược lại vẫn đúng. Biến điệu delta thích nghi cộng thêm thông số khác vào phân tích.

Hình 7.41 Mật độ lỗi lượng tử cho DM

Ta bắt đầu phân tích bằng cách giải quyết lỗi lượng tử bình phương ở tại ngõ ra của bộ thu biến điệu delta. Sự hoàn điệu bao gồm bộ lọc hạ thông LPF làm phẳng các hàm bậc thang để trở thành một đường cong liên tục. Do đó ta phải tìm các đặc tính tần số của nhiễu lượng tử. Đây không phải là bài toán phân tích đơn giản mà nó đòi hỏi một dạng đặc thù mà ta phải chấp nhận cho s(t).

Ta giả sử rằng tín hiệu gốc s(t) là một sóng hình răng cưa. Đây là ví dụ đơn giản nhất về dạng sóng được phân bố đều đặn. Tức là dạng sóng với phiên bản lượng tử của nó và cho ra kết quả nhiễu lượng tử như được trình bày trong hình 7.42. Chú ý rằng hàm nhiễu, hầu như tuần hoàn với chu kỳ Ts (chu kỳ lấy mẫu). Nhiễu tuần hoàn chính xác có chu kỳ bằng với dạng sóng phẳng nếu chu kỳ đó là một tích phân nhân với Ts. Ta giả sử rằng kích thước bậc và chu kỳ lấy mẫu được chọn để tránh quá tải cho trường hợp này để có tính đối xứng hoàn chỉnh. Mật độ phổ công suất của sa(t) có thể tính một cách chính xác. Công thức của nó là: sin4 f/f4 vì biến đổi Fourier của hàm răng cưa cho ra dạng sin2 f/f2. Zero đầu tiên của mật độ phổ công suất của dạng sóng tam giác là f=1/Ts. Các phần nhô lên bên kia của điểm này, bị giảm công suất đi 1/f. Vì thế, có một ít công suất vượt ngoài độ dốc chính. Ta giả sử rằng tất cả công suất được tập trung ở dãy tần thấp với tần số f=1/Ts. Vì ta giả sử rằng lấy mẫu biến điệu delta xảy ra ở tại tốc độ trên tốc độ Nyquist (cụ thể là lớn hơn 7 lần tốc độ Nyquist). Số zero đầu tiên của phổ xảy ra tại tần số f=1/Ts. Tần số này lớn hơn nhiều so với tần số fm. Bộ lọc thông thấp LPF với tần số cắt là fm chỉ cho qua một lượng nhỏ có liên quan đến phần nhô lên chính của phổ công suất nhiễu. Điều này được minh hoạ ở hình 7.43. Để có được kết quả tương đương, ta giả sử rằng phổ, thật phẳng qua phạm vi tần số từ 0 đến fs. Tổng công suất nhiễu là lỗi bình phương đã được tìm ra trong các phần trước là 2/3. Vì ta giả sử là phổ phẳng nên phần công suất qua bộ lọc hạ thông LPF là Tsfm hay fm/fs. Công suất nhiễu ngõ ra, được cho bởi:

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Cơ sở viễn thông. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10755/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở viễn thông' conversation and receive update notifications?

Ask