<< Chapter < Page Chapter >> Page >
μ ( k ) = 1 2 2 = 1 k - 1 k ( - 1 ) μ ( ) μ ( k - )

which allows calculating the even-order discrete scaling function moments in terms of the lower odd-order discrete scaling function moments for k = 2 , 4 , , 2 K - 2 . For example:

μ ( 2 ) = 1 2 μ 2 ( 1 ) μ ( 4 ) = - 1 2 2 [ 8 μ ( 1 ) μ ( 3 ) - 3 μ 4 ( 1 ) ]

which can be seen from values in [link] .

Johnson [link] noted from Beylkin [link] and Unser [link] that by using the moments of the autocorrelation function of the scaling function, a relationship of the continuous scaling functionmoments can be derived in the form

= 0 k k ( - 1 ) k - m ( ) m ( k - ) = 0

where 0 < k < 2 K if K - 1 wavelet moments are zero. Solving for m ( k ) in terms of lower order moments gives for k even

m ( k ) = - 1 2 = 1 k - 1 k ( - 1 ) m ( ) m ( k - )

which allows calculating the even-order scaling function moments in terms of the lower odd-order scaling function moments for k = 2 , 4 , , 2 K - 2 . For example [link] :

m ( 2 ) = m 2 ( 1 ) m ( 4 ) = 4 m ( 3 ) m ( 1 ) - 3 m 4 ( 1 ) m ( 6 ) = 6 m ( 5 ) m ( 1 ) + 10 m 2 ( 3 ) + 60 m ( 3 ) m 3 ( 1 ) + 45 m 6 ( 1 ) m ( 8 ) = 8 m ( 7 ) m ( 1 ) + 56 m ( 5 ) m ( 3 ) - 168 m ( 5 ) m 3 ( 1 ) + 2520 m ( 3 ) m 5 ( 1 ) - 840 m ( 3 ) m 2 ( 1 ) - 1575 m 8 ( 1 )
Coiflet Scaling Function and Wavelet Coefficients plus their Discrete Moments
Length- N = 6 , Degree L = 2
n h ( n ) h 1 ( n ) μ ( k ) μ 1 ( k ) k
-2 -0.07273261951285 0.01565572813546 1.414213 0 0
-1 0.33789766245781 -0.07273261951285 0 0 1
0 0.85257202021226 -0.38486484686420 0 -1.163722 2
1 0.38486484686420 0.85257202021226 -0.375737 -3.866903 3
2 -0.07273261951285 -0.33789766245781 -2.872795 -10.267374 4
3 -0.01565572813546 -0.07273261951285
Length- N = 8 , Degree L = 3
n h ( n ) h 1 ( n ) μ ( k ) μ 1 ( k ) k
-4 0.04687500000000 0.01565572813546 1.414213 0 0
-3 -0.02116013576461 -0.07273261951285 0 0 1
-2 -0.14062500000000 -0.38486484686420 0 0 2
-1 0.43848040729385 1.38486484686420 -2.994111 0.187868 3
0 1.38486484686420 -0.43848040729385 0 11.976447 4
1 0.38486484686420 -0.14062500000000 -45.851020 -43.972332 5
2 -0.07273261951285 0.02116013576461 63.639610 271.348747 6
3 -0.01565572813546 0.04687500000000
Length- N = 12 , Degree L = 4
n h ( n ) h 1 ( n ) μ ( k ) μ 1 ( k ) k
-4 0.016387336463 0.000720549446 1.414213 0 0
-3 -0.041464936781 0.001823208870 0 0 1
-2 -0.067372554722 -0.005611434819 0 0 2
-1 0.386110066823 -0.023680171946 0 0 3
0 0.812723635449 0.059434418646 0 11.18525 4
1 0.417005184423 0.076488599078 -5.911352 175.86964 5
2 -0.076488599078 -0.417005184423 0 1795.33634 6
3 -0.059434418646 -0.812723635449 -586.341304 15230.54650 7
4 0.023680171946 -0.386110066823 3096.310009 117752.68833 8
5 0.005611434819 0.067372554722
6 -0.001823208870 0.041464936781
7 -0.000720549446 -0.016387336463

if the wavelet moments are zero up to k = K - 1 . Notice that setting m ( 1 ) = m ( 3 ) = 0 causes m ( 2 ) = m ( 4 ) = m ( 6 ) = m ( 8 ) = 0 if sufficient wavelet moments are zero. This explains the extra zero moments in [link] . It also shows that the traditional specification of zero scaling function moments is redundant. In [link] m ( 8 ) would be zero if more wavelet moments were zero.

Discrete and Continuous Moments for the Coiflet Systems
N = 6 , L = 2
k μ ( k ) μ 1 ( k ) m ( k ) m 1 ( k )
0 1.4142135623 0 1.0000000000 0
1 0 0 0 0
2 0 -1.1637219122 0 -0.2057189138
3 -0.3757374752 -3.8669032118 -0.0379552166 -0.3417891854
4 -2.8727952940 -10.2673737288 -0.1354248688 -0.4537580992
5 -3.7573747525 -28.0624304008 -0.0857053279 -0.6103378310
N = 8 , L = 3
k μ ( k ) μ 1 ( k ) m ( k ) m 1 ( k )
0 1.4142135623 0 1.0000000000 0
1 0 0 0 0
2 0 0 0 0
3 -2.9941117777 0.1878687376 -0.3024509630 0.0166054072
4 0 11.9764471108 0 0.5292891854
5 -45.8510203537 -43.9723329775 -1.0458570134 -0.9716604635

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Wavelets and wavelet transforms. OpenStax CNX. Aug 06, 2015 Download for free at https://legacy.cnx.org/content/col11454/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wavelets and wavelet transforms' conversation and receive update notifications?

Ask