<< Chapter < Page Chapter >> Page >
Се воведува множеството од рационални броеви.

Множество рационални броеви

Операцијата делење со цел број различен од нула не секогаш може да се изврши во множеството цели броеви, односно количникот на два цели броја не мора да е цел број. Затоа се укажува потребата од проширување на множеството цели броеви во множество рационални броеви кое во себе го содржи множеството цели броеви како вистинско подмножество. Имено, секој цел број може да се запише како дропка со именител 1. На пр. 3 = 3 1 , 3 = 6 2 size 12{3= { {3} over {1} } ,``3= { {6} over {2} } } {} и т.н. Рационалните броеви може да се претстават како количник на два цели броја, при што бројот во именителот треба да се различен од нула.

М ножеството раци ­ о ­ нал ­ ни ­ броеви се запишува со

Q = p q p , q Z , q 0 . size 12{Q= left lbrace { {p} over {q} } \lline p,``q in Z,``q<>0 right rbrace "." } {}

Ова множество е секаде густо множество, бидејќи меѓу два произволни рационални броеви има бесконечно многу рационални броеви. За да го покажеме ова тврдење, ќе докажеме дека меѓу рационалните броеви a size 12{a} {} и b size 12{b} {} се наоѓа бројот a + b 2 . size 12{ { {a+b} over {2} } "." } {} Нека a < b size 12{a<b} {} и ако на двете страни од ова неравенство се додаде бројот a size 12{a} {} се добива

2a < a + b a < a + b 2 . alignl { stack { size 12{2a<a+b} {} # size 12{a<{ {a+b} over {2} } "." } {} } } {}

Аналогно, ако на двете страни од неравенставото a < b size 12{a<b} {} со додаде бројот b size 12{b} {} се добива

a + b < 2b a + b 2 < b . alignl { stack { size 12{a+b<2b} {} # size 12{ { {a+b} over {2} }<b "." } {} } } {}

Од овие две неравенства следува дека

a < a + b 2 < b size 12{a<{ {a+b} over {2} }<b} {}

што означува дека меѓу два рационални броеви a size 12{a} {} и b size 12{b} {} се наоѓа и рационалниот број a + b 2 . size 12{ { {a+b} over {2} } "." } {} Со истата постапка, ако на неравенството a < b size 12{a<b} {} се додава бројот 2a size 12{2a} {} и 2b size 12{2b} {} или na , ( n N ) size 12{ ital "na", \( n in N \) } {} и nb , ( n N ) size 12{ ital "nb", \( n in N \) } {} се добива низа броеви меѓу броевите меѓу a size 12{a} {} и b size 12{b} {} .

Множеството Q size 12{Q} {} исто како и множеството на природни броеви има моќ на преброиво мно­жес­тво бидејќи рационалните броеви може да се подредат во низа во која најпрво се запишуваат рационалните броеви чии што збир на цифри од именителот и броителот изнесува 1 size 12{1`} {} , потоа оние со збир 2 size 12{2`} {} , па 3 size 12{3} {} и т.н. при што се добива низата претставена со следнава шема:

0 1 size 12{ { {0} over {1} } } {} ,

0 2 , 1 1 size 12{ { {0} over {2} } ,` { {1} over {1} } } {} ,

0 3 , 1 2 , 2 1 size 12{ { {0} over {3} } ,` { {1} over {2} } ,` { {2} over {1} } } {} ,

0 4 , 1 3 , 2 2 , 3 1 size 12{ { {0} over {4} } ,` { {1} over {3} } ,` { {2} over {2} } ,` { {3} over {1} } } {} ,

0 5 , 1 4 , 2 3 , 3 2 , 4 1 size 12{ { {0} over {5} } ,` { {1} over {4} } ,` { {2} over {3} } ,` { {3} over {2} } , { {4} over {1} } } {} ,

size 12{ dotslow } {} .

Како што се гледа од горенаведената шема, во наведената низа се запишани само позитивните рационални броеви, што нималку не ја намалува општоста, бидејќи до секој позитивен рационален број може да се додаде и рационалиот број со негативен предзнак. Се забележува дека секој рационален број во оваа низа се повторува бесконечен број пати, но тоа не е битно, важно е дека рационалните броеви на овој начин се подредени во низа, а со тоа нивното множество има моќ на преброиво. За досега наведените множества од броеви важи

N Z Q size 12{N subset Z subset Q} {} ,

што јасно го покажува начинот на кој се врши проширувањето на множествата броеви.

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Воведни поими од математичка анализа. OpenStax CNX. Nov 01, 2007 Download for free at http://legacy.cnx.org/content/col10475/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Воведни поими од математичка анализа' conversation and receive update notifications?

Ask