<< Chapter < Page Chapter >> Page >

Introduction

The previous concept studies have provided us a detailed model for the structure and energetics of each atom of each element. This model is extremely useful in helping us understand how the chemical and physical properties of the elements are related to the properties of the individual atoms.

Chemistry, though, is mostly about molecules and how they react with one another, so we now turn out attention to understanding molecules. We should begin by reviewing what we know so far. Recall that there are over 50 million known compounds in our world, each made up from less than roughly 90 commonly occurring elements. From the atomic molecular theory, we understand what it means to form a compound from its component elements. A compound consists of identical molecules, with each molecule made up of the atoms of the elements in a simple whole number ratio. We call this ratio of atoms the molecular formula, and from our work on mass ratios, we also know how to determine what the molecular formula is for any compound of interest. From our work on chemical algebra, we can quantify chemical reactions, determining how much product can be produced from a given amount of reactant.

However, there are a great many fundamental questions about molecules we have not addressed or answered. Perhaps most interestingly, although we know what the molecular formula is for any compound, we don’t know what determines the numbers of atoms which combine to form a molecule. Some combinations are observed (e.g. H 2 O, H 2 O 2 ) and others are never observed (e.g. H 6 O, HO 6 ). We need to understand the principles which govern what combinations will work to form stable molecules and what combinations will not.

In order to answer these questions, we will need to develop an understanding of the forces which hold molecules together. Since atoms are neutral, the forces cannot simply be attractions of oppositely charged atoms. We know that there are diatomic molecules like H 2 and O 2 . Why would identical atoms attract each other? Our knowledge of the charges contained inside atoms will be very helpful in understanding forces which bond atoms together. These forces must also be essential in determining the reactivity of a molecule, since these forces will determine how readily the atoms can be separated and recombined with atoms from other molecules. Predicting the reactivity of a substance is one of the great powers of Chemistry. If we wish to predict chemical reactivity of a particularly substance, we must understand the forces which bond atoms together in a molecule.

Foundation

In this study, we will assume that we know the postulates of the Atomic Molecular Theory and our measurements of relative atomic masses. We know that an element is composed of individual atoms with identical masses, and we know that the atoms of different elements have different masses, which have been measured. From these masses, we can determine the molecular formula of any substance or compound of interest. As such, we’ll assume that these are known.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask