<< Chapter < Page
  Cơ sở tự động học     Page 1 / 4
Chapter >> Page >
• ĐẠI CƯƠNG. • ĐỊNH NGHĨA TÍNH ỔN ĐỊNH.• KHAI TRIỂN PHÂN BỐ TỪNG PHẦN. • MẶC PHẲNG PHỨC VÀ SỰ ỔN ĐỊNH CỦA HỆ THỐNG.• CÁC PHƯƠNG PHÁP XÁC ĐỊNH TÍNH ỔN ĐỊNH CỦA HỆ THỐNG. • TIÊU CHUẨN ỔN ĐỊNH ROUTH.• TIÊU CHUẨN HURWITZ

Đại cương.

Có nhiều đặc tính được dùng trong thiết kế hệ thống tự kiểm. nhưng yêu cầu quan trọng nhất, đó là hệ thống có ổn định theo thời gian hay không?

Nói chung, tính ổn định được dùng để phân biệt hai loại hệ thống: hữu dụng và vô dụng. trên quan điểm thực tế, ta xem một hệ thống ổn định thì hữu dụng, trong khi một hệ thống bất ổn thì vô dụng.

Đối với nhiều hệ thống khác nhau: tuyến tính, phi tuyến, không đổi theo thời gian và thay đổi theo thời gian, tính ổn định có thể được định nghĩa theo nhiều hình thức khác nhau. trong chương này, ta sẽ chỉ xét tính ổn định của những hệ tuyến tính, không đổi theo thời gian.

Một cách trực giác, tính ổn định của một hệ là khả năng quay trở về trạng thái ban đầu sau khi đã lệïch khỏi trạng thái này, khi tác động của các nguồn kích thích từ bên ngoài(hay các nhiểu) chấm dứt.

Định nghĩa tính ổn định

Một hệ thống là ổn định nếu đáp ứng xung lực giảm tới zero khi thời gian tiến tới vô cực.

* Thí dụ 6.1: cho đáp ứng xung lực của vài hệ điều khiển sau đây. Trong mỗi trướng hợp, hãy xác định tính ổn định của hệ thống.

a) g(t) = e-t.

b) g(t) = t.e-t.

c) g(t) = 1.

d) g(t) = e-t.sin3t.

e) g(t) = sint.

H.6_1.

Theo định nghĩa, hệ thống:

a) ổn định.

b) ổn định.

c) bất ổn.

d) ổn định.

  1. bất ổn. {}

Khai triển phân bố từng phần (parial fraction expansion)

Có thể tìm đáp ứng xung lực của một hệ thống bằng cách lấy biến đổi laplace ngược hàm chuyễn của hệ.

Và để không phải dùng đến tích phân biến đổi laplace ngược.

f ( t ) = 1 2πj c j c + j F ( s ) e st dt size 12{f \( t \) = { {1} over {2πj} } Int cSub { size 8{c - j infinity } } cSup { size 8{c+j infinity } } {F \( s \) e rSup { size 8{ ital "st"} } ital "dt"} } {}

ta có thể dùng phương pháp khai triển phân số từng phần

Xem hàm chuyển G(s) = C(s)/ R(s). (6.1)

Trong đó, C(s) và R(s) là những đa thức theo s. Giả sữ R(s) có bậc lớn hơn C(s). Đa thức R(s) gọi là đa thức đặc trưng và có thể viết:

R(s) = sn + a1sn-1 +....+an-1s +an. (6.2)

Trong đó, a1,...an là những hệ số thực.

Những nghiệm của phương trình đặc trưng R(s) = 0 có thể là thực, hay những cặp phức liên hợp đơn hay đa cấp (có lũy thừa hay không).

Ta xem trường hợp những nghiệm này thực và đơn cấp, phương trình (6.1) có thể được viết:

{}

G ( s ) = C ( s ) R ( s ) = C ( s ) ( s + s 1 ) ( s + s 2 ) . . . ( s + s n ) size 12{G \( s \) = { {C \( s \) } over {R \( s \) } } = { {C \( s \) } over { \( s+s rSub { size 8{1} } \) \( s+s rSub { size 8{2} } \) "." "." "." \( s+s rSub { size 8{n} } \) } } } {} (6.3)

Trong đó, -s1, -s2,....-sn là những nghiệm của phương trình đặc trưng zero của R(s) hay là những cực của G(s).

G ( s ) = k s 1 s + s 1 + k s 2 s + s 2 + . . . . + k s n s + s n size 12{G \( s \) = { { { size 10{k} } rSub { size 8{ { size 10{s} } rSub { size 6{1} } } } } over {s+s rSub { size 8{1} } } } + { { { size 10{k} } rSub { size 8{ { size 10{s} } rSub { size 6{2} } } } } over {s+s rSub { size 8{2} } } } + "." "." "." "." + { { { size 10{k} } rSub { size 8{ { size 10{s} } rSub { size 6{n} } } } } over {s+s rSub { size 8{n} } } } } {} {} (6.4)

Những hệ số Ksi (i=1, 2, 3,...n) được xác định bằng cách nhóm 2 vế của (6.3) hoặc (6.4) cho (s+si) rồi đặt s = -si.

Thí dụ, để tìm hệ số Ks1, ta nhóm cả hai vế (6.3) cho (s+s1) và đặt s = -s1.

K S1 = ( s + s 1 ) C ( s ) R ( s ) S = S1 = C ( s 1 ) ( s 2 s 1 ) ( s 3 s 1 ) . . . . ( s n s 1 ) size 12{K rSub { size 8{S1} } = left [ \( s+s rSub { size 8{1} } \) { {C \( s \) } over {R \( s \) } } right ] rSub { size 8{S= - S1} } = { {C \( - s rSub { size 8{1} } \) } over { \( s rSub { size 8{2} } - s rSub { size 8{1} } \) \( s rSub { size 8{3} } - s rSub { size 8{1} } \) "." "." "." "." \( s rSub { size 8{n} } - s rSub { size 8{1} } \) } } } {} (6.5)

* thí dụ 6.2: xem hàm chuyển của một hệ thống.

G ( s ) = 5s + 3 ( s + 1 ) ( s + 2 ) ( s + 3 ) size 12{G \( s \) = { {5s+3} over { \( s+1 \) \( s+2 \) \( s+3 \) } } } {} (6.6).

Hãy tìm đáp ứng xung lực của hệ.

Trước hết, ta áp dụng kỹ thuật khai triển phân số từng phần.

G ( s ) = K 1 s + 1 + K 2 s + 2 + K 3 s + 3 size 12{G \( s \) = { {K rSub { size 8{ - 1} } } over {s+1} } + { {K rSub { size 8{ - 2} } } over {s+2} } + { {K rSub { size 8{ - 3} } } over {s+3} } } {} (6.7)

các hệ số K-1, K-2, K-3 được xác định như sau:

K 1 = ( s + 1 ) G ( s ) S = 1 = 5 ( 1 ) + 3 ( 1 + 2 ) ( 1 + 3 ) = 1 size 12{K rSub { size 8{ - 1} } = left [ \( s+1 \) G \( s \) right ] rSub { size 8{S= - 1} } = { {5 \( - 1 \) +3} over { \( - 1+2 \) \( - 1+3 \) } } = - 1} {}

K 2 = ( s + 2 ) G ( s ) S = 2 = 5 ( 2 ) + 3 ( 2 + 1 ) ( 2 + 3 ) = 7 size 12{K rSub { size 8{ - 2} } = left [ \( s+2 \) G \( s \) right ] rSub { size 8{S= - 2} } = { {5 \( - 2 \) +3} over { \( - 2+1 \) \( - 2+3 \) } } =7} {}

K 3 = ( s + 3 ) G ( s ) S = 3 = 5 ( 3 ) + 3 ( 3 + 1 ) ( 3 + 2 ) = 6 size 12{K rSub { size 8{ - 3} } = left [ \( s+3 \) G \( s \) right ] rSub { size 8{S= - 3} } = { {5 \( - 3 \) +3} over { \( - 3+1 \) \( - 3+2 \) } } = - 6} {}

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Cơ sở tự động học. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10756/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở tự động học' conversation and receive update notifications?

Ask