<< Chapter < Page
  Cơ sở tự động học     Page 4 / 4
Chapter >> Page >

s4 + s3 - s - 1 = 0

Bảng Routh :

s4 1 0 -1 0

s3 1 -1 0 0

s2 1 -1 0

s1 0 0

s0 -1

Hệ số ở hàng s0 được tính bằng cách thay 0 ở hàng s1 bằng , rồi tính hệ số của hàng s0 như sau :

ε ( 1 ) 0 ε = 1 size 12{ { {ε \( - 1 \) - 0} over {ε} } = - 1} {}

Cần phương cách này khi có một zero ở cột một. Vì có một lần đổi dấu ở cột một, nên phương trình đặc trưng có một nghiệm có phần thực dương. Do đó, hệ thống không ổn định.

Tiêu chuẩn hurwitz

Tiêu chuẩn ổn định Hurwitz là phương pháp khác để xác định tất cả nghiệm của phương trình đặc trưng có phần thực âm hay không . Tiêu chuẩn này được áp dụng thông qua việc sử dụng các định thức tạo bởi những hệ số của phương trình đặc trưng.

Giả sử hệ số thứ nhất, an dương. Các định thức Ai với i = 1, 2, .... , n-1 được tạo ra như là các định thức con (minor determinant) của định thức :

Các định thức con được lập nên như sau :

Δ 1 = a n 1 Δ 2 = a n 1 a n 3 a n a n 2 = a n 1 a n 2 a n a n 3 Δ 3 = a n 1 a n 3 a n 5 a n a n 2 a n 4 0 a n 1 a n 3 = a n 1 a n 2 a n 3 + a n a n 1 a n 5 a n a n 3 2 a n 4 a n 1 2 alignl { stack { size 12{Δ rSub { size 8{1} } =``a rSub { size 8{n - 1} } } {} #Δ rSub { size 8{2} } = left [ matrix { a rSub { size 8{n - 1} } {} # a rSub { size 8{n - 3} } {} ##a rSub { size 8{n} } {} # a rSub { size 8{n - 2} } {} } right ]`=`a rSub { size 8{n - 1} } a rSub { size 8{n - 2} } ` - ``a rSub { size 8{n} } a rSub { size 8{n - 3} } {} # Δ rSub { size 8{3} } = left [ matrix {a rSub { size 8{n - 1} } {} # a rSub { size 8{n - 3} } {} # a rSub { size 8{n - 5} } {} ## a rSub { size 8{n} } {} # a rSub { size 8{n - 2} } {} # a rSub { size 8{n - 4} } {} ##0 {} # a rSub { size 8{n - 1} } {} # a rSub { size 8{n - 3} } {} } right ]`=a rSub { size 8{n - 1} } a rSub { size 8{n - 2} } `a rSub { size 8{n - 3} } +``a rSub { size 8{n} } a rSub { size 8{n - 1} } a rSub { size 8{n - 5} } {} # ``````````````````````````````````````````````````````````````````` - ``a rSub { size 8{n} } a rSub { size 8{n - 3} } rSup { size 8{2} } ` - a rSub { size 8{n - 4} } a rSub { size 8{n - 1} } rSup { size 8{2} } {}} } {}

Và tăng dần đến ?n

Tất cả các nghiệm của phương trình đặc trưng có phần thực âm nếu và chỉ nếu ?i>0 với i = 1 , 2 , …… , n.

* Thí dụ 6 -10: Với n = 3

Δ 3 = a 2 a 0 0 a 3 a 1 0 0 a 2 a 0 = a 2 a 1 a 0 a 0 2 a 3 size 12{Δ rSub { size 8{3} } ``=`` lline ` matrix { a rSub { size 8{2} } {} # a rSub { size 8{0} } {} # 0 {} ##a rSub { size 8{3} } {} # a rSub { size 8{1} } {} # 0 {} ## 0 {} # a rSub { size 8{2} } {} # a rSub { size 8{0} } {}} ` rline `=``a rSub { size 8{2} } `a rSub { size 8{1} } `a rSub { size 8{0} } ` - `a rSub { size 8{0} } rSup { size 8{2} } `a rSub { size 8{3} } } {}

Δ 2 = a 2 a 0 a 3 a 1 = a 2 a 1 a 0 a 3 size 12{Δ rSub { size 8{2} } `=` lline ` matrix { a rSub { size 8{2} } {} # a rSub { size 8{0} } {} ##a rSub { size 8{3} } {} # a rSub { size 8{1} } {} } rline `=`a rSub { size 8{2} } `a rSub { size 8{1`} } ` - `a rSub { size 8{0} } `a rSub { size 8{3} } } {}

Δ 1 = a 2 size 12{Δ rSub { size 8{1} } `=`a rSub { size 8{2} } } {}

Tất cả các nghiệm của phương trình đặc trưng có phần thực âm nếu

a2>0 , a2 a1 – a0 a3>0

a2 a1 a0 – a02 a3>0

* Thí dụ 6 -11 : Xét sự ổn định của hệ thống có phương trình đặc trưng

s3 + 8s2 + 14s + 24 = 0

Lập các định thức Hurwitz

Δ 3 = 8 24 0 1 14 0 0 8 24 = 88 × 24 > 0 size 12{Δ rSub { size 8{3} } `=` lline ` matrix {8 {} # "24" {} # 0 {} ## 1 {} # "14" {} # 0 {} ##0 {} # 8 {} # "24"{} } ` rline `=``"88"`` times `"24"``>``0} {}

Δ 2 = 8 24 1 14 = 88 > 0 size 12{Δ rSub { size 8{2} } `=` lline ` matrix { 8 {} # "24" {} ##1 {} # "14"{} } ` rline ``=``"88"``>``0} {}

Δ 1 = 8 > 0 size 12{Δ rSub { size 8{1} } `=``8``>``0} {}

Các định thức đều lớn hơn không, các nghiệm của phương trình đặc trưng đều có phần thực âm, nên hệ thống ổn định.

* Thí dụ 6 –12 : Với khoãng giá trị nào của k thì hệ thống sau đây ổn định :

s2 + ks + ( 2k – 1 ) = 0

Δ 2 = k 0 1 2k 1 = k ( 2K 1 ) size 12{Δ rSub { size 8{2} } ``=`` lline ` matrix { k {} # 0 {} ##1 {} # 2k` - `1{} } ` rline ``=``k \( 2K` - `1 \) } {}

Δ 1 = k size 12{Δ rSub { size 8{1} } ``=``k} {}

k (2k -1)>0 k>0

Để hệ ổn định, cần có :

Vậy k > 1 2 size 12{k``>`` { {1} over {2} } } {}

* Thí dụ 6 – 13 :

Một hệ thống thiết kế đạt yêu cầu khi mạch khuếch đại của nó có độ lợi k = 2 . Hãy xác định xem độ lợi này có thể thay đổi bao nhiêu trước khi hệ thống trở nên bất ổn, nếu phương trình đặc trưng của hệ là :

s3+ s2 (4+k) + 6s + 16 + 8k = 0

  • Thay các tham số của phương trình đã cho vào điều kiện Hurwitz tổng quát ở thí dụ 6 –10. Ta được những điều kiện để hệ ổn định :

4 + k>0 , (4+k)6 – (16+8k)>0

(4+k) 6 (16+8k) – (16 + 8k)2>0

Giã sử độ lợi k không thể âm, nên điều kiện thứ nhất thỏa.

Điều kiện thứ nhì và thứ ba thỏa nếu k<4

Vậy với một độ lợi thiết kế có giá trị là 2, hệ thống có thể tăng độ lợi lên gấp đôi trước khi nó trở nên bất ổn.

Độ lợi cũng có thể giãm xuống không mà không gây ra sự mất ổn định.

Bài tập chương vi

VI. 1 Xem nghiệm của phương trình đặc trưng của vài hệ thống điều khiển dưới đây. Hãy xác định trong mỗi trường hợp sự ổn định của hệ. (ổn định, ổn định lề, hay bất ổn)

  1. –1 ,-2 f) 2 , -1 , -3
  2. –1 , +1 g) -6 , -4 , 7
  3. –3 , +2 h) -2 + 3j , -2 – 3j , -2
  4. –1 + j , -1 – j i) -j , j , -1 , 1
  5. –2 +j , -2 – j
  6. 2 , -1 , -3

VI. 2 Môït hệ thống có các cực ở –1 , -5 và các zero ở 1, -2 . Hệ thống ổn định không?

VI. 3 Xét tính ổn định của hệ thống có phương trình đặc trưng :

(s + 1) (s + 2) (s - 3) = 0

VI. 4 Phương trình của một mạch tích phân được viết bởi :

dy/dt = x

Xác định tính ổn định của mạch tích phân.

VI. 5 Tìm đáp ứng xung lực của hệ thống có hàm chuyễn :

G ( s ) = s 2 + 2s + 2 ( s + 1 ) ( s + 2 ) size 12{G \( s \) ``=`` { {s rSup { size 8{2`} } +``2s``+``2} over { \( s+1 \) \( s+2 \) } } } {}

Xét tính ổn định của hệ dựa vào định nghĩa.

VI. 6 Khai triển G(s) thành phân số từng phần. Rồi tìm đáp ứng xung lực và xét tính ổn định.

a) G ( s ) = ( s 2 + s 2 ) s ( s + 1 ) ( s + 2 ) size 12{G \( s \) ``=`` { { - \( s rSup { size 8{2} } +````s``` - ``2 \) } over {s \( s+1 \) \( s+2 \) } } } {}

b) G ( s ) = s 2 + 9 s + 19 s ( s + 1 ) ( s + 2 ) ( s + 4 ) size 12{G \( s \) ``=`` { {s rSup { size 8{2} } +```9`s```+`"19"} over {s \( s+1 \) \( s+2 \) \( s+4 \) } } } {}

VI. 7 Dùng kỹ thuật biến đổi laplace, tìm đáp ứng xung lực của hệ thống diễn tả bởi phương trình vi phân :

d 3 y dt 3 + dy dt = x size 12{ { {d rSup { size 8{3} } y} over { ital "dt" rSup { size 8{3} } } } ``+`` { { ital "dy"} over { ital "dt"} } ```=```x} {} ĐS : y(t) = 1 – cost

VI. 8 Xác định tất cả các cực và zero của :

G ( s ) = s 2 26 s 5 7s 4 30 s 3 size 12{G \( s \) ``=`` { {s rSup { size 8{2`} } ` - "26"} over {s rSup { size 8{5} } - ``7s rSup { size 8{4} } ` - "30"s rSup { size 8{3} } } } } {} ĐS : s3 (s+3)(s-10)

VI. 9 Với mổi đa thức đặc trưng sau đây, xác định tính ổn định của hệ thống.

  1. 2s4 +8s3 + 10s2 + 10s + 20 = 0
  2. s3 + 7s2 + 7s + 46 = 0
  3. s5 + 6s4 + 10s2 + 5s + 24 = 0
  4. s3 - 2s2 + 4s + 6 = 0
  5. s4 +8s3 + 24s2 + 32s + 16 = 0
  6. s6 + 4s4 + 8s2 + 16 = 0 ĐS : b , f : ổn định

VI.10 với giá trị nào của k làm cho hệ thống ổn định, nếu đa thức đặc trưng là :

s3+ (4+k) s2+ 6s + 12 = 0 ĐS : k>2

VI. 11 có bao nhiêu nghiệm có phần thực dương, trong số các đa thức sau đây :

  1. s3 + s2 - s + 1
  2. s4 +2s3 + 2s2 + 2s + 1
  3. s3 + s2 – 2
  4. s4 - s2 - 2s + 2
  5. s3 + s2 + s + 6 ĐS : a(2) , b(0) , c(1) , d(2) , e(2)

VI. 12 Với giá trị dương nào của k làm cho đa thức :

s4 +8s3 + 24s2 + 32s + k = 0

Có các nghiệm với phần thực là zero? Đó là những nghiệm nào?

ĐS : k = 80 , s = ± j2

VI. 13 Hệ thống có phương trình đặc trưung sau đây thì ổnh định?

s4 +3s3 + 6s2 + 9s + 12 = 0

VI. 14 Xác định hàm chuyễn và tìm điều kiện để mạch sau đây ổn định.

ĐS : v 0 ( s ) v i ( s ) = ( s + 1 R 1 C 1 ) ( s + 1 R 2 C 2 ) s 2 + ( 1 R 2 C 2 + 1 R 2 C 1 + 1 R 1 C 1 ) s + 1 R 1 C 1 R 2 C 2 size 12{ { {v rSub { size 8{0} } \( s \) } over {v rSub { size 8{i} } \( s \) } } = { { \( s+ { {1} over {R rSub { size 8{1} } C rSub { size 8{1} } } } \) \( s+ { {1} over {R rSub { size 8{2} } C rSub { size 8{2} } } } \) } over {s rSup { size 8{2} } + \( { {1} over {R rSub { size 8{2} } C rSub { size 8{2} } } } + { {1} over {R rSub { size 8{2} } C rSub { size 8{1} } } } + { {1} over {R rSub { size 8{1} } C rSub { size 8{1} } } } \) s+ { {1} over {R rSub { size 8{1} } C rSub { size 8{1} } R rSub { size 8{2} } C rSub { size 8{2} } } } } } } {}

VI. 15 Xác định hàm chuyễn và tìm điều kiện để mạch sau đây ổn định.

ĐS : v 0 ( s ) v i ( s ) = 1 R 1 R 2 C 1 C 2 s 2 + ( R 1 C 1 + R 1 C 2 + R 2 C 2 ) s + 1 size 12{ { {v rSub { size 8{0} } \( s \) } over {v rSub { size 8{i} } \( s \) } } = { {1} over {R rSub { size 8{1} } R rSub { size 8{2} } C rSub { size 8{1} } C rSub { size 8{2} } s rSup { size 8{2} } + \( R rSub { size 8{1} } C rSub { size 8{1} } +R rSub { size 8{1} } C rSub { size 8{2} } +R rSub { size 8{2} } C rSub { size 8{2} } \) s+1} } } {}

(Dùng bảng Routh)

VI.16 Xác định những điều kiện Hurwith cho sự ổn định của hệ thống có phương trình đặc trưng cấp 4. Giả sử a4>0

a4 s4 + a3 s3 + a2 s2 + a1 s + a0 = 0

ĐS : a3>0 , a3 a2­ – a4 a1­>0 , a3 a2­a1 – a0 a3­2 – a4 a1­2>0

a3 (a2­a1a0 – a3 a0­2 ) – a0 a1­2 a4>0

*****************

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Cơ sở tự động học. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10756/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở tự động học' conversation and receive update notifications?

Ask