<< Chapter < Page | Chapter >> Page > |
When a new image comes into the system, there are three special cases for recognition.
For a real system, where the pictures are of standard format like a driver’s license photo, the first two cases are useful. In general, the case where one tries to identify a random picture, such a slice of pizza, with a set of faces images is pretty unrealistic. Nonetheless, one can still define these threshold values to characterize the images.
Looking back at the weight matrix of values using M eigenfaces, let’s define the face space as an M-dimensional sphere encompassing all weight vectors in the entire database. A fairly approximate radius of this face space will then be half the diameter of this sphere, or mathematically, half the distance between the furthest points in the sphere.
To judge whether a new image falls within this radius, let's calculate the reconstruction error between the image and its reconstruction using M eigenfaces. If the image projects fairly well onto the face space (image follows a face distribution), then the error will be small. However a non face image will almost always lie outside the radius of the face space.
If the resulting reconstruction error is greater than the threshold, then the tested image probably is not a face image. Similar thresholds can be calculated for images of like faces. If a image passes the initial face test, it can be compared to the threshold values of faces in the database. A similar match process can be used as mentioned earlier. Also the removal or averaging technique can be applied for detection as previously described.
Notification Switch
Would you like to follow the 'Face recognition using eigenfaces' conversation and receive update notifications?