<< Chapter < Page Chapter >> Page >

We return to the topic of classification, and we assume an input (feature) space X and a binary output (label) space Y = { 0 , 1 } . Recall that the Bayes classifier (which minimizes the probability of misclassification) is defined by

f * ( x ) = 1 , P ( Y = 1 | X = x ) 1 / 2 0 , o t h e r w i s e .

Throughout this section, we will denote the conditional probability function by

η ( x ) P ( Y = 1 | X = x ) .

Plug-in classifiers

One way to construct a classifier using the training data { X i , Y i } i = 1 n is to estimate η ( x ) and then plug-it into the form of the Bayes classifier. That is obtain an estimate,

η ^ n ( x ) = η ( x ; { X i , Y i } i = 1 n )

and then form the “plug-in" classification rule

f ^ ( x ) = 1 , η ^ ( x ) 1 / 2 0 , o t h e r w i s e .
The function η ( x ) is generally more complicated than the ultimate classification rule (binary-valued), as we cansee
η : X [ 0 , 1 ] f : X { 0 , 1 } .

Therefore, in this sense plug-in methods are solving a more complicated problem than necessary. However, plug-in methods can perform well,as demonstrated by the next result.

Theorem

Plug-in classifier

Let η ˜ be an approximation to η , and consider the plug-in rule

f ( x ) = 1 , η ˜ ( x ) 1 / 2 0 , o t h e r w i s e .

Then,

R ( f ) - R * 2 E [ | η ( x ) - η ˜ ( x ) | ]

where

R ( f ) = P ( f ( X ) Y ) R * = R ( f * ) = inf f R ( f ) .

Consider any x R d . In proving the optimality of the Bayes classifier f * in Lecture 2 , we showed that

P f ( x ) Y | X = x - P f * ( x ) Y | X = x = 2 η ( x ) - 1 1 { f * ( x ) = 1 } - 1 { f ( x ) = 1 } ,

which is equivalent to

P f ( x ) Y | X = x - P f * ( x ) Y | X = x = 2 η ( x ) - 1 1 { f * ( x ) f ( x ) } ,

since f * ( x ) = 1 whenever 2 η ( x ) - 1 > 0 . Thus,

P ( f ( X ) Y ) - R * = R d 2 | η ( x ) - 1 / 2 | 1 { f * ( x ) f ( x ) } p X ( x ) d x where p X ( x ) is the marginal density of X R d 2 | η ( x ) - η ˜ ( x ) | 1 { f * ( x ) f ( x ) } p X ( x ) d x R d 2 | η ( x ) - η ˜ ( x ) | p X ( x ) d x = 2 E [ | η ( X ) - η ˜ ( X ) | ]

where the first inequality follows from the fact

f ( x ) f * ( x ) | η ( x ) - η ˜ ( x ) | | η ( x ) - 1 / 2 |

and the second inequality is simply a result of the fact that 1 { f * ( x ) f ( x ) } is either 0 or 1.

Pictorial illustration of | η ( x ) - η ˜ ( x ) | | η ( x ) - 1 / 2 | when f ( x ) f * ( x ) . Note that the inequality P ( f ( X ) Y ) - R * R d 2 | η ( x ) - η ˜ ( x ) | 1 { f * ( x ) f ( x ) } p X ( x ) d x shows that the excess risk is at most twice the integral over the setwhere f * ( x ) f ( x ) . The difference | η ( x ) - η ˜ ( x ) | may be arbitrarily large away from this set without effecting the error rate of the classifier. Thisillustrates the fact that estimating η well everywhere (i.e., regression) is unnecessary for the design of a good classifier (weonly need to determine where η crosses the 1 / 2 -level). In other words, “classification is easier than regression.”

The theorem shows us that a good estimate of η can produce a good plug-in classification rule. By “good" estimate, we mean an estimator η ˜ that is close to η in expected L 1 -norm .

The histogram classifier

Let's assume that the (input) features are randomly distributed over theunit hypercube X = [ 0 , 1 ] d (note that by scaling and shifting any set of bounded features we can satisfy this assumption),and assume that the (output) labels are binary, i.e., Y = { 0 , 1 } . A histogram classifier is based on a partition the hypercube [ 0 , 1 ] d into M smaller cubes of equal size.

Partition of hypercube in 2 dimensions

Consider the unit square [ 0 , 1 ] 2 and partition it into M subsquares of equal area (assuming M is a squared integer). Let the subsquares be denoted by { Q i } , i = 1 , ... , M .

Example of hypercube [ 0 , 1 ] 2 in M equally sized partition

Define the following piecewise-constant estimator of η ( x ) :

η ^ n ( x ) = j = 1 M P ^ j 1 { x Q j }

where

P ^ j = i = 1 n 1 { X i Q j , Y i = 1 } i = 1 n 1 { X i Q j } .

Like our previous denoising examples, we expect that the bias of η ^ n will decrease as M increases, but the variance will increase as M increases.

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Statistical learning theory. OpenStax CNX. Apr 10, 2009 Download for free at http://cnx.org/content/col10532/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Statistical learning theory' conversation and receive update notifications?

Ask