<< Chapter < Page Chapter >> Page >
Here we compare two different methods for interpreting data from a seismic survey.

The data from a seismic survey appears in the form of time series vectors, representing samples of the received acoustic signals over a fixed period of time. In our simulation example, the samples come every 4 ms (Fs = 250 Hz) and the vectors are 512 samples (2.048 s) in length. There is one time vector for each source/receiver combination, so for our example, we have 32 sources and 128 receivers for a total of 4096 time vectors. Therefore, our raw data will be represented as a 512x4096 matrix which we will load into MATLAB.

At this point, it is necessary to process this matrix and map this data onto a grid so that the shape of the formations we are studying may be determined. The basic technique involving ellipses has been described above, so all the program needs to do is to draw the ellipses, weighted by the magnitude of the time samples, and add the results for each time vector.

We consider now, two possible algorithms for drawing the necessary ellipses. The first method will traverse every pixel on the grid and at each point plot the value of the correct sample from the time vector. The second method will traverse the time vector and for each sample will plot an ellipse of appropriate magnitude.

What do we need to consider when comparing these two methods? First of all, there are 4096 vectors so this problem can become computationally very costly. For each method, we seek to find a standard run-time and evaluate different methods of optimizing this run time. Additionally, we hope to resolve as clear a picture as possible, so we should compare the graphs of the final answers to see which resolution is clearer.

Method 1 – traversing the grid

For every point, we can calculate the total distance required to travel from the source to that point and then to the receiver using the distance formula on the (X,Y) coordinates of the point, the source, and the receiver.

D Y Y S 2 X X S 2 Y Y R 2 X X R 2

We may now divide by velocity to get the time in seconds, and then we may again divide by the sample period to get an index for the time series vector that corresponds to this point.

t i D V T s

Note that this value for time will not be an integer, so we must interpolate using the time series indices above and below it.

t + ceil t i

t - floor t i

A simple linear interpolation method will give us an appropriate value that is weighted based on how close t is to t-minus and t-plus.

Mag TimeSeries t - t + t i TimeSeries t + t i t -

We finish by applying these equations to every point on the grid. This will trace out the ellipse patterns we desire for a given source-receiver pair.

Method 2 – traverse the time vector

Taking one source-receiver pair's time vector, we first find the distance between the source and receiver. This distance is the minimum distance a signal must traverse. Since each sample in a time vector is 4ms, and we know that a wave travels at 1500m/s, the n th sample in a time vector takes n *4ms to travel n *0.004s*1500m/s. If the n th sample distance less than the distance between the source and receiver, it is ignored since it is bad data. Usually these samples have a received signal value of 0 anyway.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Seismic imaging. OpenStax CNX. Dec 16, 2004 Download for free at http://cnx.org/content/col10251/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Seismic imaging' conversation and receive update notifications?

Ask