<< Chapter < Page Chapter >> Page >

This chapter describes the benchmarking methods used to evaluate the performance and accuracy of various FFT implementations throughout this thesis.

The two architectures of interest are the Intel x86 architecture and the ARM architecture. A comprehensive set of results collected from a wide range of machines implementing these architectures is presented in Results and discussion , but throughout the rest of the thesis, benchmarks are performed on an Apple Macbook Air 4,2; a widely available and currently state-of-the-art machine that is equipped with an Intel Core i5-2557M. [link] summarizes the specifications of the machine.

For the x86 benchmarks, an existing framework called BenchFFT   [link] was used. For the ARM benchmarks, which were performed on iOS devices, there was no existing FFT benchmark software, and so an application was written for this purpose, which is described in "ARM architecture" .

Specifications of the primary test machine
Macbook Air 4,2
CPU Dual-core Intel Core i5 (i5-2557M)
CPU clock 1.7 GHz (turbo to 2.7GHz with one core)
L1 cache 32KB I-cache&32KB D-cache
L2 cache 256KB
L3 cache 3MB shared
Memory 4 GB of 1333 MHz DDR3 SDRAM
OS OS X 10.7.2
SIMD extensions SSE and AVX

X86 architecture

The x86 benchmarks were performed with BenchFFT, a collection of FFT libraries and benchmarking software assembled by Frigo and Johnson, the authors of FFTW  [link] . The benchmarks in BenchFFT use timing and calibration code from lmbench , a performance analysis tool written by Larry McVoy and Carl Staelin  [link] .

Timing

BenchFFT measures the initialization time and runtime of an FFT separately. The initialization time is measured only once, and thus outliersdue to effects from external factors such as OS scheduling are occasionally observed. Routines from lmbench are then used to calibrate the minimum number of FFT iterations required for accurate measurementusing the gettimeofday function. Finally, the time taken to run the minimum number of iterations is measured eight times, from which the minimumtime divided by the number of iterations is used, in order to factor out effects from external factors.

The minimum time for a transform is then used to determine a scaled inverse time measurement, sometimes known as CTGs. CTG are defined as:

C T G s = 5 N log 2 ( N ) 10 9 t

for complex transforms and

C T G s = 2 . 5 N log 2 ( N ) 10 9 t

for real transforms, where t is the time taken to run one transform (in seconds). Unless the Cooley-Tukey radix-2 algorithm is used, a measurement expressed in CTGs is not an actual FLOP count – it is a roughmeasure of an algorithm's efficiency relative to the radix-2 algorithm and the clock speed of the machine.

When a transform has several variants (such as direction or radix), BenchFFT reports the speed of the FFT as being the fastest of the possible options.

Accuracy

To measure the accuracy of a transform, BenchFFT compares an FFT with an arbitrary-precision FFT computed on the same inputs, and reports therelative RMS error. The inputs are pseudo-random in the range [ 0 . 5 , 0 . 5 ) and the arbitrary-precision FFT has over 40 decimal places of accuracy.

When a transform has several variants (such as direction or radix), BenchFFT reports the accuracy as being worst of the results.

Compiling

Except where otherwise noted, ICC version 12.1.0 for OS X was used to compile 64-bit code. For OS X builds, the compiler flags used were “-O3”,while “-O3 -msse2” (or equivalent) was used for Linux builds. In the cases where the FFT uses AVX, the code is compiled with “-xAVX” or“-mavx” (depending on compiler).

Some libraries included in the BenchFFT software have their own compilation scripts which override the defaults, and in the case of commercial libraries(such as Intel IPP and Apple vDSP), the compiler flags are of little consequence because the libraries are distributed in binary form.

Data format

FFT libraries use interleaved format and/or complex format to store the data. In the case of interleaved format, the real and imaginary parts ofcomplex numbers are stored adjacently in memory, while in the case of split format, the real and imaginary parts are stored in separate arrays.

The majority of FFT libraries use interleaved format to store data. In the case where the library supports interleaved or split format, BenchFFT uses interleaved format. However there are a few libraries that only supportsplit format, and in theses cases it should be noted the results are not strictly comparable (Apple vDSP is one such case).

Arm architecture

There was no existing FFT benchmarking software for iOS on ARM devices, and so a benchmarking tool was written. The tool runs the benchmarking in athread of normal priority.

Compiling

The code was compiled with Apple clang compiler 3.0 for ARMv7 targets running iOS 5.0. The compiler flags used were “-O3 -mfpu=neon”.

Timing

The Apple A4 and A5 SoCs are built around the ARM Cortex-A8 and Cortex-A9 cores, which have hardware cycle counters that can be used for precise timing.The cycle counter control registers can only be accessed in kernel mode, and so the high resolution timer available through the mach_absolute_time function was used instead.

For a given size of transform, a calibration routine determines the number of iterations that must be run such that the total runtime is approximately onesecond. After calibration, each FFT to be evaluated is run for the pre-determined number of iterations – this loop is run eight times, and thefastest time divided by the number of iterations is taken to be the FFTs runtime. By running each FFT for approximately one second, and repeatingthe measurement eight times to find the best time, the effects from external factors such as OS scheduling are minimized. As with BenchFFT, the time isexpressed in CTGs.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Computing the fast fourier transform on simd microprocessors. OpenStax CNX. Jul 15, 2012 Download for free at http://cnx.org/content/col11438/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computing the fast fourier transform on simd microprocessors' conversation and receive update notifications?

Ask