<< Chapter < Page
  Speech synthesis   Page 1 / 1
Chapter >> Page >
This is an overview of the techniques used to develope a voice randomization program.

Initial approach

When two people speak with the same pitch, there is still no mistaking one for the other; the uniqueness of a voice goes beyond its tone. The placement of harmonics, then, clearly does not make a voice distinguishable since two people with identical pitch have harmonics at exactly the same locations. Rather, the ability to identify a voice comes from the relative height of each harmonic to the next, just like the heights of each harmonic on a clarinet and a guitar make these instruments sound different even as they play the same note.

Dft of randomized signal

DFT of one 512 sample chunck of a speech signal after it has had it pitches randomly altered.

With this in mind, our first algorithm tackled the problem by first using the harmonic detection described earlier to pinpoint the location of each harmonic. Using this information, the height of each harmonic was randomly lowered or raised by a slight amount. Usually, though, the resulting voice sounded just like the original with some noise added in on top of it. After fooling around with this concept for some time to no avail, we reached the conclusion that the idea is solid, but that to make up a new voice requires much more finesse than simply making the magnitude of each harmonic higher or lower. Without perfectly adapting the phases and making sure that the envelope of the magnitudes is a shape that can be comprehended by a human ear as real speech, the only result is linearly adding a new signal to our old one. The DFT of the new signal is equal to the additions we made to the harmonics of the voice.

Simplification of process using the speech synthesizer

The second attempt at a voice randomizer directly utilizes our pitch shifting algorithm and works much better. First, the signal is matricized just like before. But instead of processing each chunk in the same way, our algorithm asks the pitch shifter to shift each chunk separately, specifying a different and random shift every time. The result is a voice with a pitch that changes wildly and extremely quickly, making it impossible to tell who it is with your raw hearing. The main drawback with this technique is that there is no true security or identity masking. The NSA could easily break the signal into the same 512 sample long chunks and analyze them individually along with a normal sample of the voice to determine a potential match. However, for certain purposes this randomizer performs superbly.

Randomized speech examples
Unaltered voice Original
Randomized Voice Random

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Speech synthesis. OpenStax CNX. Dec 18, 2004 Download for free at http://cnx.org/content/col10253/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Speech synthesis' conversation and receive update notifications?

Ask