<< Chapter < Page | Chapter >> Page > |
In every ecosystem, each consumer level depends upon lower-level organisms (e.g. a primary consumer depends upon a producer, a secondary consumer depends upon a primary consumer and a tertiary consumer depends upon a secondary consumer). All of these levels, from producer to tertiary consumer, form what is known as a food chain . A community has many food chains that are interwoven into a complex food web . The amount of organic material in a food web is referred to as its biomass . When one organism eats another, chemical energy stored in biomass is transferred from one level of the food chain to the next. Most of the consumed biomass is not converted into biomass of the consumer. Only a small portion of the useable energy is actually transferred to the next level, typically 10 percent. Each higher level of the food chain represents a cumulative loss of useable energy. The result is a pyramid of energy flow , with producers forming the base level.
Assuming 10 percent efficiency at each level, the tertiary consumer level would use only 0.1 percent of the energy available at the initial producer level. Because there is less energy available high on the energy pyramid, there are fewer top-level consumers. A disruption of the producer base of a food chain, therefore, has its greatest effect on the top-level consumer.
Ecosystem populations constantly fluctuate in response to changes in the environment, such as rainfall, mean temperature, and available sunlight. Normally, such changes are not drastic enough to significantly alter ecosystems, but catastrophic events such as floods, fires and volcanoes can devastate communities and ecosystems. It may be long after such a catastrophic event before a new, mature ecosystem can become established. After severe disturbance the make up of a community is changed. The resulting community of species changes, as early, post disturbance, fast-growing species are out-competed by other species. This natural process is called ecological succession . It involves two types of succession: primary succession and secondary succession .
Primary succession is the development of the first biota in a given region where no life is found. An example is of this is the surrounding areas where volcanic lava has completely covered a region or has built up a new island in the ocean. Initially, only pioneer species can survive there, typically lichens and mosses , which are able to withstand poor conditions. They are able to survive in highly exposed areas with limited water and nutrients. Lichen, which is made up of both a fungus and an alga, survives by mutualism. The fungus produces an acid, which acts to further dissolve the barren rock. The alga uses those exposed nutrients, along with photosynthesis, to produce food for both. Grass seeds may land in the cracks, carried by wind or birds. The grass grows, further cracking the rocks, and upon completing its own life cycle, contributes organic matter to the crumbling rock to make soil. In time, larger plants, such as shrubs and trees may inhabit the area, offering habitats and niches to immigrating animal life. When the maximum biota that the ecosystem can support is reached, the climax community prevails. This occurs after hundreds if not thousands of years depending on the climate and location.
Notification Switch
Would you like to follow the 'Ap environmental science' conversation and receive update notifications?