<< Chapter < Page Chapter >> Page >

This chapter describes SFFT: a high-performance FFT library for SIMD microprocessors that is, in many cases, faster than the state of the art FFT libraries reviewed in Existing libraries .

Implementation details described some simple implementations of the FFT and concluded with an analysis of the performance bottlenecks. The implementations presented in this chapter are designed to improve spatial locality, and utilize larger straight line blocks of code at the leaves, corresponding to sub-transforms of sizes 8 through to 64, in order to reduce latency and stack overheads.

In distinct contrast to the simple FFT programs of Chapter 3 , this chapter employs meta-programming. Rather than describe FFT programs, we describe programs that statically elaborate the FFT into a DAG of nodes representing the computation, apply some optimizing transformations to the graph, and then generate code. Many other auto-vectorization techniques, such as those employed by SPIRAL, operate at the instruction level  [link] , but the techniques presented in this chapter vectorize blocks of computation at the algorithm level of abstraction, thus enabling some of the algorithms structure to be utilized.

Three types of implementation are described in this chapter, and the performance of each depends on the parameters of the transform to be computed and the characteristics of the underlying machine.For a given machine and FFT to be computed (which has parameters such as length and precision), the fastest configuration is selected from among a small set of up to eight possible FFT configurations – a much smaller space compared to FFTW's exhaustive search of all possible FFTs. The fastest configuration is easily selected by timing each of the possible options, but it is shown in Results and discussion that it is also possible to use machine learning to build a classifier that will predict the fastest based on attributes such as the size of the cache.

SFFT comprises three types of conjugate-pair implementation, which are:

  1. Fully hard-coded FFTs;
  2. Four-step FFTs with hard-coded sub-transforms;
  3. FFTs with hard-coded leaves.

Fully hard-coded

Statically elaborating a DAG that represents a depth-first recursive FFT is much like computing a depth-first recursive FFT: instead of performing computation at the leaves of the recursion and where smaller DFTs are combined into one, a node representing the computation is appended to the end of a list, and the list of nodes, i.e., a topological ordering of the DAG, is later translated into a program that can be compiled and executed.

Emitting code with a vector length of 1 (i.e., scalar code or vector code where only one complex element fits in a vector register) is relatively simple and is described in "Vector length 1" . For vector lengths above 1, vectorizing the topological ordering of nodes poses some subtle challenges, and these details are described in "Other vector lengths" . The fully hard-coded FFTs described in this section are generally only practical for smaller sizes of transforms, typically where N 128 , however these techniques are expanded in later sections to scale the performance to larger sizes.

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Computing the fast fourier transform on simd microprocessors. OpenStax CNX. Jul 15, 2012 Download for free at http://cnx.org/content/col11438/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computing the fast fourier transform on simd microprocessors' conversation and receive update notifications?

Ask