<< Chapter < Page Chapter >> Page >
Development of ideas of vector expansion

Most people with technical backgrounds are familiar with the ideas of expansion vectors or basis vectors and of orthogonality; however, therelated concepts of biorthogonality or of frames and tight frames are less familiar but also important. In the study of wavelet systems, we find thatframes and tight frames are needed and should be understood, at least at a superficial level. One can find details in [link] , [link] , [link] , [link] , [link] . Another perhaps unfamiliar concept is that of an unconditional basis usedby Donoho, Daubechies, and others [link] , [link] , [link] to explain why wavelets are good for signal compression, detection, and denoising [link] , [link] . In this chapter, we will very briefly define and discuss these ideas. At this point, you may want to skip thesesections and perhaps refer to them later when they are specifically needed.

Bases, orthogonal bases, and biorthogonal bases

A set of vectors or functions f k ( t ) spans a vector space F (or F is the Span of the set) if any element of that space can be expressed as a linear combination of members of thatset, meaning: Given the finite or infinite set of functions f k ( t ) , we define Span k { f k } = F as the vector space with all elements of the space of the form

g ( t ) = k a k f k ( t )

with k Z and t , a R . An inner product is usually defined for this space and is denoted f ( t ) , g ( t ) . A norm is defined and is denoted by f = f , f .

We say that the set f k ( t ) is a basis set or a basis for a given space F if the set of { a k } in [link] are unique for any particular g ( t ) F . The set is called an orthogonal basis if f k ( t ) , f ( t ) = 0 for all k . If we are in three dimensional Euclidean space, orthogonal basis vectors are coordinate vectors that are at right (90 o ) angles to each other. We say the set is an orthonormal basis if f k ( t ) , f ( t ) = δ ( k - ) i.e. if, in addition to being orthogonal, the basis vectors are normalized to unity norm: f k ( t ) = 1 for all k .

From these definitions it is clear that if we have an orthonormal basis, we can express any element in the vector space, g ( t ) F , written as [link] by

g ( t ) = k g ( t ) , f k ( t ) f k ( t )

since by taking the inner product of f k ( t ) with both sides of [link] , we get

a k = g ( t ) , f k ( t )

where this inner product of the signal g ( t ) with the basis vector f k ( t ) “picks out" the corresponding coefficient a k . This expansion formulation or representation is extremely valuable. It expresses [link] as an identity operator in the sense that the inner product operates on g ( t ) to produce a set of coefficients that, when used to linearly combine the basis vectors, gives back the original signal g ( t ) . It is the foundation of Parseval's theorem which says the norm or energycan be partitioned in terms of the expansion coefficients a k . It is why the interpretation, storage, transmission, approximation, compression, andmanipulation of the coefficients can be very useful. Indeed, [link] is the form of all Fourier type methods.

Although the advantages of an orthonormal basis are clear, there are cases where the basis system dictated by the problem is not and cannot (orshould not) be made orthogonal. For these cases, one can still have the expression of [link] and one similar to [link] by using a dual basis set f ˜ k ( t ) whose elements are not orthogonal to each other, but to the corresponding element of the expansion set

Questions & Answers

what is defense mechanism
Chinaza Reply
what is defense mechanisms
Chinaza
I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Wavelets and wavelet transforms. OpenStax CNX. Aug 06, 2015 Download for free at https://legacy.cnx.org/content/col11454/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wavelets and wavelet transforms' conversation and receive update notifications?

Ask