<< Chapter < Page Chapter >> Page >
Destructive interference
Destructive interference is when two pulses meet, resulting in a smaller pulse.
Superposition of two pulses. The left-hand series of images demonstrates destructive interference, since the pulses cancel each other. The right-hand series of images demonstrate a partial cancelation of two pulses, as their amplitudes are not the same in magnitude.

The two pulses shown below approach each other at 1 m · s - 1 . Draw what the waveform would look like after 1 s , 2 s and 5 s .

  1. After 1 s , pulse A has moved 1 m to the right and pulse B has moved 1 m to the left.

  2. After 1 s more, pulse A has moved 1 m to the right and pulse B has moved 1 m to the left.

  3. After 5 s , pulse A has moved 5 m to the right and pulse B has moved 5 m to the left.

The idea of superposition is one that occurs often in physics. You will see much, much more of superposition!

Experiment: constructive and destructive interference

Aim

To demonstrate constructive and destructive interference

Apparatus

Ripple tank apparatus

Method

  1. Set up the ripple tank
  2. Produce a single pulse and observe what happens
  3. Produce two pulses simultaneously and observe what happens
  4. Produce two pulses at slightly different times and observe what happens

Results and conclusion

You should observe that when you produce two pulses simultaneously you see them interfere constructively and when you produce two pulses at slightly different times you see them interfere destructively.

Problems involving superposition of pulses

  1. For the following pulse, draw the resulting wave forms after 1 s , 2 s , 3 s , 4 s and 5 s . Each pulse is travelling at 1 m · s - 1 . Each block represents 1 m . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
  2. For the following pulse, draw the resulting wave forms after 1 s , 2 s , 3 s , 4 s and 5 s . Each pulse is travelling at 1 m · s - 1 . Each block represents 1 m . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
  3. For the following pulse, draw the resulting wave forms after 1 s , 2 s , 3 s , 4 s and 5 s . Each pulse is travelling at 1 m · s - 1 . Each block represents 1 m . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
  4. For the following pulse, draw the resulting wave forms after 1 s , 2 s , 3 s , 4 s and 5 s . Each pulse is travelling at 1 m · s - 1 . Each block represents 1 m . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
  5. For the following pulse, draw the resulting wave forms after 1 s , 2 s , 3 s , 4 s and 5 s . Each pulse is travelling at 1 m · s - 1 . Each block represents 1 m . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
  6. For the following pulse, draw the resulting wave forms after 1 s , 2 s , 3 s , 4 s and 5 s . Each pulse is travelling at 1 m · s - 1 . Each block represents 1 m . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
  7. What is superposition of waves?
  8. What is constructive interference?
  9. What is destructive interference?

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics - grade 10 [caps 2011]. OpenStax CNX. Jun 14, 2011 Download for free at http://cnx.org/content/col11298/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics - grade 10 [caps 2011]' conversation and receive update notifications?

Ask