<< Chapter < Page Chapter >> Page >

The arrangement of atoms in the periodic table

The periodic table of the elements is a method of showing the chemical elements in a table. The elements are arranged in order of increasing atomic number. Most of the work that was done to arrive at the periodic table that we know, can be attributed to a man called Dmitri Mendeleev in 1869. Mendeleev was a Russian chemist who designed the table in such a way that recurring ("periodic") trends in the properties of the elements could be shown. Using the trends he observed, he even left gaps for those elements that he thought were 'missing'. He even predicted the properties that he thought the missing elements would have when they were discovered. Many of these elements were indeed discovered and Mendeleev's predictions were proved to be correct.

To show the recurring properties that he had observed, Mendeleev began new rows in his table so that elements with similar properties were in the same vertical columns, called groups . Each row was referred to as a period . One important feature to note in the periodic table is that all the non-metals are to the right of the zig-zag line drawn under the element boron. The rest of the elements are metals, with the exception of hydrogen which occurs in the first block of the table despite being a non-metal.

A simplified diagram showing part of the Periodic Table

You can view an online periodic table at Periodic table . The full periodic table is also reproduced at the front of this book.

Activity: inventing the periodic table

You are the official chemist for the planet Zog. You have discovered all the same elements that we have here on Earth, but you don't have a periodic table. The citizens of Zog want to know how all these elements relate to each other. How would you invent the periodic table? Think about how you would organize the data that you have and what properties you would include. Do not simply copy Mendeleev's ideas, be creative and come up with some of your own. Research other forms of the periodic table and make one that makes sense to you. Present your ideas to your class.

Groups in the periodic table

A group is a vertical column in the periodic table and is considered to be the most important way of classifying the elements. If you look at a periodic table, you will see the groups numbered at the top of each column. The groups are numbered from left to right starting with 1 and ending with 18. This is the convention that we will use in this book. On some periodic tables you may see that the groups are numbered from left to right as follows: 1, 2, then an open space which contains the transition elements , followed by groups 3 to 8. Another way to label the groups is using Roman numerals. In some groups, the elements display very similar chemical properties and the groups are even given separate names to identify them.

The characteristics of each group are mostly determined by the electron configuration of the atoms of the element.

  • Group 1: These elements are known as the alkali metals and they are very reactive.
    Electron diagrams for some of the Group 1 elements, with sodium and potasium incomplete; to be completed as an excersise.
  • Group 2: These elements are known as the alkali earth metals . Each element only has two valence electrons and so in chemical reactions, the group 2 elements tend to lose these electrons so that the energy shells are complete. These elements are less reactive than those in group 1 because it is more difficult to lose two electrons than it is to lose one.
  • Group 13 elements have three valence electrons.
  • Group 16: These elements are sometimes known as the chalcogens. These elements are fairly reactive and tend to gain electrons to fill their outer shell.
  • Group 17: These elements are known as the halogens . Each element is missing just one electron from its outer energy shell. These elements tend to gain electrons to fill this shell, rather than losing them. These elements are also very reactive.
  • Group 18: These elements are the noble gases . All of the energy shells of the halogens are full and so these elements are very unreactive.
    Electron diagrams for two of the noble gases, helium ( He ) and neon ( Ne ).
  • Transition metals: The differences between groups in the transition metals are not usually dramatic.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry grade 10 [caps]. OpenStax CNX. Jun 13, 2011 Download for free at http://cnx.org/content/col11303/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry grade 10 [caps]' conversation and receive update notifications?

Ask