<< Chapter < Page Chapter >> Page >

Ozone is very unstable and is readily destroyed by reactions with other atmospheric species such nitrogen, hydrogen, bromine, and chlorine. In fact, most ozone is destroyed in this way. The use of chlorofluorocarbons (CFCs) by humans in recent decades has greatly affected the natural ozone cycle by increasing the rate of its destruction due to reactions with chlorine. Because the temperature of the stratosphere rises with altitude, there is little convective mixing of the gases. The stratosphere is therefore very stable. Particles that are injected (such as volcanic ash) can stay aloft for many years without returning to the ground. The same is true for pollutants produced by humans. The upper boundary of the stratosphere is known as the stratopause , which is marked by a sudden decrease in temperature.

The third layer in the earth's atmosphere is called the mesosphere . It extends from the stratopause (about 50 kilometers) to roughly 85 kilometers above the earth's surface. Because the mesosphere has negligible amounts of water vapor and ozone for generating heat, the temperature drops across this layer. It is warmed from the bottom by the stratosphere. The air is very thin in this region with a density about 1/1000 that of the surface. With increasing altitude this layer becomes increasingly dominated by lighter gases, and in the outer reaches, the remaining gases become stratified by molecular weight.

The fourth layer, the thermosphere , extends outward from about 85 kilometers to about 600 kilometers. Its upper boundary is ill defined. The temperature in the thermosphere increases with altitude, up to 1500º C or more. The high temperatures are the result of absorption of intense solar radiation by the last remaining oxygen molecules. The temperature can vary substantially depending upon the level of solar activity.

The lower region of the thermosphere (up to about 550 kilometers) is also known as the ionosphere . Because of the high temperatures in this region, gas particles become ionized. The ionosphere is important because it reflects radio waves from the earth's surface, allowing long-distance radio communication. The visual atmospheric phenomenon known as the northern lights also occurs in this region. The outer region of the atmosphere is known as the exosphere . The exosphere represents the final transition between the atmosphere and interplanetary space. It extends about 1000 kilometers and contains mainly helium and hydrogen. Most satellites operate in this region.

Solar radiation is the main energy source for atmospheric heating. The atmosphere heats up when water vapor and other greenhouse gases in the troposphere absorb infrared radiation either directly from the sun or re-radiated from the earth's surface. Heat from the sun also evaporates ocean water and transfers heat to the atmosphere. The earth's surface temperature varies with latitude. This is due to uneven heating of the earth's surface. The region near the equator receives direct sunlight, whereas sunlight strikes the higher latitudes at an angle and is scattered and spread out over a larger area. The angle at which sunlight strikes the higher latitudes varies during the year due to the fact that the earth's equatorial plane is tilted 23.5º relative to its orbital plane around the sun. This variation is responsible for the different seasons experienced by the non-equatorial latitudes.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ap environmental science. OpenStax CNX. Sep 25, 2009 Download for free at http://cnx.org/content/col10548/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ap environmental science' conversation and receive update notifications?

Ask