<< Chapter < Page | Chapter >> Page > |
There’s something for everyone, from searching for new prime numbers (PrimeGrid) to simulating the future of the Earth’s climate (ClimatePrediction.net). One of the projects, MalariaControl.net, involved researchers from the University of Cape Town as well as from universities in Mali and Senegal.
The other neat feature of BOINC is that it lets people who share a common interest in a scientific topic share their passion, and learn from each other. BOINC even supports teams – groups of people who put their computer power together, in a virtual way on the Web, to get a higher score than their rivals. So BOINC is a bit like Facebook and World of Warcraft combined – part social network, part online multiplayer game.
Here’s a thought: spend some time searching around BOINC for a project you’d like to participate in, or tell your class about.
Before computers were machines, they were people. Vast rooms full of hundreds of government employees used to calculate the sort of mathematical tables that a laptop can produce nowadays in a fraction of a second. They used to do those calculations laboriously, by hand. And because it was easy to make mistakes, a lot of the effort was involved in double-checking the work done by others.
Well, that was a long time ago. Since electronic computers emerged over 50 years ago, there has been no need to assemble large groups of humans to do boring, repetitive mathematical tasks. Silicon chips can solve those problems today far faster and more accurately. But there are still some mathematical problems where the human brain excels.
Volunteer computing is a good name for what BOINC does: it enables volunteers to contribute computing power of their PCs and laptops. But in recent years, a new trend has emerged in citizen cyberscience that is best described as volunteer thinking. Here the computers are replaced by brains, connected via the Web through an interface called eyes. Because for some complex problems – especially those that involve recognizing complex patterns or three-dimensional objects – the human brain is still a lot quicker and more accurate than a computer.
Volunteer thinking projects come in many shapes and sizes. For example, you can help to classify millions of images of distant galaxies (GalaxyZoo), or digitize hand-written information associated with museum archive data of various plant species (Herbaria@home). This is laborious work, which if left to experts would take years or decades to complete. But thanks to the Web, it’s possible to distribute images so that hundreds of thousands of people can contribute to the search.
Not only is there strength in numbers, there is accuracy, too. Because by using a technique called validation – which does the same sort of double-checking that used to be done by humans making mathematical tables – it is possible to practically eliminate the effects of human error. This is true even though each volunteer may make quite a few mistakes. So projects like Planet Hunters have already helped astronomers pinpoint new planets circling distant stars. The game FoldIt invites people to compete in folding protein molecules via a simple mouse-driven interface. By finding the most likely way a protein will fold, volunteers can help understand illnesses like Alzheimer’s disease, that depend on how proteins fold.
Volunteer thinking is exciting. But perhaps even more ambitious is the emerging idea of volunteer sensing: using your laptop or even your mobile phone to collect data – sounds, images, text you type in – from any point on the planet, helping scientists to create global networks of sensors that can pick up the first signs of an outbreak of a new disease (EpiCollect), or the initial tremors associated with an earthquake (QuakeCatcher.net), or the noise levels around a new airport (NoiseTube).
There are about a billion PCs and laptops on the planet, but already 5 billion mobile phones. The rapid advance of computing technology, where the power of a ten-year old PC can easily be packed into a smart phone today, means that citizen cyberscience has a bright future in mobile phones. And this means that more and more of the world’s population can be part of citizen cyberscience projects. Today there are probably a few million participants in a few hundred citizen cyberscience initiatives. But there will soon be seven billion brains on the planet. That is a lot of potential citizen cyberscientists.
You can explore much more about citizen cyberscience on the Web. There’s a great list of all sorts of projects, with brief summaries of their objectives, at (External Link) . BBC Radio 4 produced a short series on citizen science (External Link) and you can subscribe to a newsletter about the latest trends in this field at (External Link) . The Citizen Cyberscience Centre, www.citizencyberscience.net which is sponsored by the South African Shuttleworth Foundation, is promoting citizen cyberscience in Africa and other developing regions.
Notification Switch
Would you like to follow the 'Mathematics grade 10 teachers' guide - siyavula webbooks' conversation and receive update notifications?