This module discusses the graphing of exponential curves.
By plotting points, you can discover that the graph of
looks like this:
A few points to notice about this graph.
It goes through the point
because
.
It never dips below the
-axis. The
domain is unlimited, but the
range is y>0. (*Think about our definitions of exponents: whether
is positive or negative, integer or fraction,
is
always positive.)
Every time you move one unit to the right, the graph height doubles. For instance,
is twice
, because it multiplies by
one more 2. So as you move to the right, the
-values start looking like 8, 16, 32, 64, 128, and so on, going up more and more sharply.
Conversely, every time you move one unit to the left, the graph height drops in half. So as you move to the left, the
-values start looking like
,
,
, and so on, falling closer and closer to 0.
What would the graph of
look like? Of course, it would also go through
because
. With each step to the right, it would
triple ; with each step to the left, it would drop in a
third . So the overall shape would look similar, but the rise (on the right) and the drop (on the left) would be faster.
As you might guess, graphs such as
and
all have this same characteristic shape. In fact, any graph
where
will look basically the same: starting at
it will rise more and more sharply on the right, and drop toward zero on the left. This type of graph models
exponential growth —functions that keep multiplying by the same number. A common example, which you work through in the text, is compound interest from a bank.
The opposite graph is
.
Each time you move to the right on this graph, it multiplies by
: in other words, it
divides by 2, heading closer to zero the further you go. This kind of equation is used to model functions that keep
dividing by the same number; for instance, radioactive decay. You will also be working through examples like this one.
Of course, all the
permutations from the first chapter on “functions” apply to these graphs just as they apply to any graph. A particularly interesting example is
. Remember that when you replace
with
,
becomes the old
and vice-versa; in other words, the graph flips around the
-axis. If you take the graph of
and permute it in this way, you get a familiar shape:
Yes, it’s
in a new disguise!
Why did it happen that way? Consider that
. But
is just 1 (in other words, 1 to the
anything is 1), so
. But negative exponents go in the denominator:
is the same thing as
! So we arrive at:
. The two functions are the same, so their graphs are of course the same.
Another fun pair of permutations is:
Looks just likebut vertically stretched: all y-values double
Looks just likebut horizontally shifted: moves 1 to the left
If you permute
in these two ways, you will find that they create the same graph.
Questions & Answers
A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?