<< Chapter < Page Chapter >> Page >

λ s = L ss + L sr ( θ me ) i r = L ss i s + L sr cos ( θ me ) i r size 12{λ rSub { size 8{s} } =L rSub { size 8{ ital "ss"} } +L rSub { size 8{ ital "sr"} } \( θ rSub { size 8{ ital "me"} } \) i rSub { size 8{r} } =L rSub { size 8{ ital "ss"} } i rSub { size 8{s} } +L rSub { size 8{ ital "sr"} } "cos" \( θ rSub { size 8{ ital "me"} } \) i rSub { size 8{r} } } {} (4.55)

λ r = L sr ( θ me ) i s + L rr i r = L sr cos ( θ me ) i s + L rr i r size 12{λ rSub { size 8{r} } =L rSub { size 8{ ital "sr"} } \( θ rSub { size 8{ ital "me"} } \) i rSub { size 8{s} } +L rSub { size 8{ ital "rr"} } i rSub { size 8{r} } =L rSub { size 8{ ital "sr"} } "cos" \( θ rSub { size 8{ ital "me"} } \) i rSub { size 8{s} } +L rSub { size 8{ ital "rr"} } i rSub { size 8{r} } } {} (4.56)

In matrix notation

λ s λ r = L ss L sr ( θ me ) L sr ( θ me ) L rr i s i r size 12{ left [ matrix { λ rSub { size 8{s} } {} ##λ rSub { size 8{r} } } right ]= left [ matrix { L rSub { size 8{ ital "ss"} } {} # L rSub { size 8{ ital "sr"} } \( θ rSub { size 8{ ital "me"} } \) {} ##L rSub { size 8{ ital "sr"} } \( θ rSub { size 8{ ital "me"} } \) {} # L rSub { size 8{ ital "rr"} } {} } right ]left [ matrix { i rSub { size 8{s} } {} ##i rSub { size 8{r} } } right ]} {} (4.57)

The terminal voltages v s size 12{v rSub { size 8{s} } } {} and v r size 12{v rSub { size 8{r} } } {} are

v s = R s i s + s dt size 12{v rSub { size 8{s} } =R rSub { size 8{s} } i rSub { size 8{s} } + { {dλ rSub { size 8{s} } } over { ital "dt"} } } {} (4.58)

v r = R r i r + r dt size 12{v rSub { size 8{r} } =R rSub { size 8{r} } i rSub { size 8{r} } + { {dλ rSub { size 8{r} } } over { ital "dt"} } } {} (4.59)

where R s size 12{R rSub { size 8{s} } } {} and R r size 12{R rSub { size 8{r} } } {} are the resistances of the stator and rotor windings respectively.

  • When the rotor is revolving, θ me size 12{θ rSub { size 8{ ital "me"} } } {} must be treated as a variable. Differentiation of Eqs.4.56 and 4.57 and substitution of the results in Eqs.4.59 and 4.60 then give

v s = R s i s + L ss di s dt + L sr cos ( θ me ) di r dt L sr i r sin ( θ me ) me dt size 12{v rSub { size 8{s} } =R rSub { size 8{s} } i rSub { size 8{s} } +L rSub { size 8{ ital "ss"} } { { ital "di" rSub { size 8{s} } } over { ital "dt"} } +L rSub { size 8{ ital "sr"} } "cos" \( θ rSub { size 8{ ital "me"} } \) { { ital "di" rSub { size 8{r} } } over { ital "dt"} } - L rSub { size 8{ ital "sr"} } i rSub { size 8{r} } "sin" \( θ rSub { size 8{ ital "me"} } \) { {dθ rSub { size 8{ ital "me"} } } over { ital "dt"} } } {} (4.60)

v r = R r i r + L rr di r dt + L sr cos ( θ me ) di r dt L sr i s sin ( θ me ) me dt size 12{v rSub { size 8{r} } =R rSub { size 8{r} } i rSub { size 8{r} } +L rSub { size 8{ ital "rr"} } { { ital "di" rSub { size 8{r} } } over { ital "dt"} } +L rSub { size 8{ ital "sr"} } "cos" \( θ rSub { size 8{ ital "me"} } \) { { ital "di" rSub { size 8{r} } } over { ital "dt"} } - L rSub { size 8{ ital "sr"} } i rSub { size 8{s} } "sin" \( θ rSub { size 8{ ital "me"} } \) { {dθ rSub { size 8{ ital "me"} } } over { ital "dt"} } } {} (4.61)

me dt = ω me = poles 2 ω m size 12{ { {dθ rSub { size 8{ ital "me"} } } over { ital "dt"} } =ω rSub { size 8{ ital "me"} } = left [ { { ital "poles"} over {2} } right ]ω rSub { size 8{m} } } {} (4.62)

is the instantaneous speed in electrical radians per second. In a two-pole machine, θme and ωme are equal to the instantaneous shaft angle θm and the shaft speed ωm respectively. In a multipole machine, they are related by Eqs.4.54 and 4.46. The second and third terms on the fight-hand sides of Eqs.4.61 and 4.62 are L(di/dt) induced voltages like those induced in stationary coupled circuits such as the windings of transformers. The fourth terms are caused by mechanical motion and are proportional to the instantaneous speed. These are the speed voltage terms which correspond to the interchange of power between the electric and mechanical systems.

  • The electromechanical torque can be found from the coenergy.

W fld ' = 1 2 L ss i s 2 + 1 2 L rr i r 2 + L sr i s i r cos θ me = 1 2 L ss i s 2 + 1 2 L rr i r 2 + L sr i s i r cos ( poles 2 ) θ m alignl { stack { size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = { {1} over {2} } L rSub { size 8{ ital "ss"} } i rSub { size 8{s} } rSup { size 8{2} } + { {1} over {2} } L rSub { size 8{ ital "rr"} } i rSub { size 8{r} } rSup { size 8{2} } +L rSub { size 8{ ital "sr"} } i rSub { size 8{s} } i rSub { size 8{r} } "cos"θ rSub { size 8{ ital "me"} } } {} #" "= { {1} over {2} } L rSub { size 8{ ital "ss"} } i rSub { size 8{s} } rSup { size 8{2} } + { {1} over {2} } L rSub { size 8{ ital "rr"} } i rSub { size 8{r} } rSup { size 8{2} } +L rSub { size 8{ ital "sr"} } i rSub { size 8{s} } i rSub { size 8{r} } "cos" left [ \( { { ital "poles"} over {2} } \) θ rSub { size 8{m} } right ] {}} } {} (4.63)

Note that the coenergy of Eq.4.63 has been expressed specifically in terms of the shaft angle θ m size 12{θ rSub { size 8{m} } } {} because the torque expression requires that the torque be obtained from the derivative of the coenergy with respect to the spatial angle θ m size 12{θ rSub { size 8{m} } } {} and not with respect to the electrical angle θ me size 12{θ rSub { size 8{ ital "me"} } } {} . Thus,

T = W fld ' ( i s , i r , θ m ) θ m i s , i r = poles 2 L sr i s i r sin poles 2 θ m = poles 2 L sr i s i r sin θ me alignl { stack { size 12{T= { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{s} } ,i rSub { size 8{r} } ,θ rSub { size 8{m} } \) } over { partial θ rSub { size 8{m} } } } \rline rSub { size 8{i rSub { size 6{s} } ,i rSub { size 6{r} } } } = - left [ { { ital "poles"} over {2} } right ]L rSub { ital "sr"} size 12{i rSub {s} } size 12{i rSub {r} } size 12{"sin" left [ { { ital "poles"} over {2} } θ rSub {m} right ]}} {} #size 12{" "= - left [ { { ital "poles"} over {2} } right ]L rSub { size 8{ ital "sr"} } i rSub { size 8{s} } i rSub { size 8{r} } "sin"θ rSub { size 8{ ital "me"} } } {}} } {} (4.64)

where T is the electromechanical torque acting to accelerate the rotor (i.e., a positive torque acts to increase θ m size 12{θ rSub { size 8{m} } } {} ). The negative sign in Eq.4.64 means that the electromechanical torque acts in the direction to bring the magnetic fields of the stator and rotor into alignment.

4.7.2 Magnetic Field Viewpoint

  • In the discussion of Section 4.7.1 the characteristics of a rotating machine as viewed from its electric and mechanical terminals have been expressed in terms of its winding inductances. This viewpoint gives little insight into the physical phenomena which occur within the machine. In this section, we will explore an alternative formulation in terms of the interacting magnetic fields.

Figure 4.25 Simplified two-pole machine: (a) elementary model and

(b) vector diagram of mmf waves. Torque is produced by the tendency of the rotor and stator magnetic fields to align. Note that these figures are drawn with δ sr size 12{δ rSub { size 8{ ital "sr"} } } {} positive, i.e., with the rotor mmf wave leading that of the stator F s size 12{F rSub { size 8{s} } } {} .

  • As we have seen, currents in the machine windings create magnetic flux in the air gap between the stator and rotor, the flux paths being completed through the stator and rotor iron. This condition corresponds to the appearance of magnetic poles on both the stator and the rotor, centered on their respective magnetic axes, as shown in Fig.4.35a for a two-pole machine with a smooth air gap. Torque is produced by the tendency of the two component magnetic fields to line up their magnetic axes.
  • We shall derive an expression for the magnetic coenergy stored in the air gap in terms of the stator and rotor mmfs and the angle δ sr size 12{δ rSub { size 8{ ital "sr"} } } {} between their magnetic axes. The torque can then be found from the partial derivative of the coenergy with respect to angle δ sr size 12{δ rSub { size 8{ ital "sr"} } } {} .
  • The line integral of Hag across the gap then is simply H ag g size 12{H rSub { size 8{ ital "ag"} } g} {} and equals the resultant air-gap mmf F sr size 12{F rSub { size 8{ ital "sr"} } } {} produced by the stator and rotor windings; thus

H ag g = F sr size 12{H rSub { size 8{ ital "ag"} } g=F rSub { size 8{ ital "sr"} } } {} (4.65)

  • The mmf waves of the stator and rotor are spatial sine waves with δ sr size 12{δ rSub { size 8{ ital "sr"} } } {} being the phase angle between their magnetic axes in electrical degrees. They can be represented by the space vectors F s size 12{F rSub { size 8{s} } } {} and F r size 12{F rSub { size 8{r} } } {} drawn along the magnetic axes of the stator- and rotor mmf waves respectively. The resultant mmf F sr size 12{F rSub { size 8{ ital "sr"} } } {} acting across the air gap, also a sine wave, is their vector sum.

F sr 2 = F s 2 + F r 2 + 2F s F r cos δ sr size 12{F rSub { size 8{ ital "sr"} } rSup { size 8{2} } =F rSub { size 8{s} } rSup { size 8{2} } +F rSub { size 8{r} } rSup { size 8{2} } +2F rSub { size 8{s} } F rSub { size 8{r} } "cos"δ rSub { size 8{ ital "sr"} } } {} (4.66)

The resultant radial H ag size 12{H rSub { size 8{ ital "ag"} } } {} field is a sinusoidal space wave whose peak value H ag , peak size 12{H rSub { size 8{ ital "ag", ital "peak"} } } {} is, from Eq.4.65,

( H ag ) peak = F sr g size 12{ \( H rSub { size 8{ ital "ag"} } \) rSub { size 8{ ital "peak"} } = { {F rSub { size 8{ ital "sr"} } } over {g} } } {} (4.67)

Average coenergy density = μ o 2 ( H ag ) peak 2 2 = μ o 4 F sr g 2 size 12{ { {μ rSub { size 8{o} } } over {2} } left [ { { \( H rSub { size 8{ ital "ag"} } \) rSub { size 8{ ital "peak"} } rSup { size 8{2} } } over {2} } right ]= { {μ rSub { size 8{o} } } over {4} } left [ { {F rSub { size 8{ ital "sr"} } } over {g} } right ] rSup { size 8{2} } } {} (4.68)

W fld ' = ( average coenergy density ) ( volume of air gap ) = μ o 4 F sr g 2 πD lg = μ o π Dl 4g F sr 2 alignl { stack { size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = \( "average coenergy density" \) \( "volume of air gap" \) } {} #" "= { {μ rSub { size 8{o} } } over {4} } left [ { {F rSub { size 8{ ital "sr"} } } over {g} } right ] rSup { size 8{2} } πD"lg"= { {μ rSub { size 8{o} } π ital "Dl"} over {4g} } F rSub { size 8{ ital "sr"} } rSup { size 8{2} } {}} } {} (4.69)

W fld ' = μ o π Dl 4g ( F s 2 + F r 2 + 2F s F r cos δ sr ) size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = { {μ rSub { size 8{o} } π ital "Dl"} over {4g} } \( F rSub { size 8{s} } rSup { size 8{2} } +F rSub { size 8{r} } rSup { size 8{2} } +2F rSub { size 8{s} } F rSub { size 8{r} } "cos"δ rSub { size 8{ ital "sr"} } \) } {} (4.70)

For a two-pole machine

T = W fld ' δ sr F s , F r = μ o π Dl 2g F s F r sin δ sr size 12{T= { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } } over { partial δ rSub { size 8{ ital "sr"} } } } \rline rSub { size 8{F rSub { size 6{s} } ,F rSub { size 6{r} } } } = - left [ { {μ rSub {o} size 12{π ital "Dl"}} over {2g} } right ]F rSub {s} size 12{F rSub {r} } size 12{"sin"δ rSub { ital "sr"} }} {} (4.71)

The general expression for the torque for a multipole machine is

T = poles 2 μ o π Dl 2g F s F r sin δ sr size 12{T= - left [ { { ital "poles"} over {2} } right ] left [ { {μ rSub { size 8{o} } π ital "Dl"} over {2g} } right ]F rSub { size 8{s} } F rSub { size 8{r} } "sin"δ rSub { size 8{ ital "sr"} } } {} (4.72)

  • In this equation, δ sr size 12{δ rSub { size 8{ ital "sr"} } } {} is the electrical space-phase angle between the rotor and stator mmf waves and the torque T acts in the direction to accelerate the rotor. Thus when δ sr size 12{δ rSub { size 8{ ital "sr"} } } {} is positive, the torque is negative and the machine is operating as a generator.
  • Similarly, a negative value of δ sr size 12{δ rSub { size 8{ ital "sr"} } } {} corresponds to positive torque and, correspondingly, motor action. The torque, acting to accelerate the rotor, can then be expressed in terms of the resultant mmf wave F sr size 12{F rSub { size 8{ ital "sr"} } } {} ; thus

T = poles 2 μ o π Dl 2g F s F sr sin δ s size 12{T= - left [ { { ital "poles"} over {2} } right ] left [ { {μ rSub { size 8{o} } π ital "Dl"} over {2g} } right ]F rSub { size 8{s} } F rSub { size 8{ ital "sr"} } "sin"δ rSub { size 8{s} } } {} (4.73)

T = poles 2 μ o π Dl 2g F r F sr sin δ r size 12{T= - left [ { { ital "poles"} over {2} } right ] left [ { {μ rSub { size 8{o} } π ital "Dl"} over {2g} } right ]F rSub { size 8{r} } F rSub { size 8{ ital "sr"} } "sin"δ rSub { size 8{r} } } {} (4.74)

T = poles 2 π Dl 2 B sr F r sin δ r size 12{T= left [ { { ital "poles"} over {2} } right ] left [ { {π ital "Dl"} over {2} } right ]B rSub { size 8{ ital "sr"} } F rSub { size 8{r} } "sin"δ rSub { size 8{r} } } {} (4.75)

  • One of the inherent limitations in the design of electromagnetic apparatus is the saturation flux density of magnetic materials. Because of saturation in the armature teeth the peak value B sr size 12{B rSub { size 8{ ital "sr"} } } {} of the resultant flux-density wave in the air gap is limited to about 1.5 to 2.0T. The maximum permissible value of the winding current, and hence the corresponding mmf wave, is limited by the temperature rise of the winding and other design requirements. Because the resultant flux density and mmf appear explicitly in Eq.4.75, this equation is in a convenient form for design purposes and can be used to estimate the maximum torque which can be obtained from a machineof a given size.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Intergrated library system management. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10801/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intergrated library system management' conversation and receive update notifications?

Ask