<< Chapter < Page Chapter >> Page >

F agl = F max [ 1 2 cos ( θ ae ω e t ) + 1 2 cos ( θ ae + ω e t ) ] size 12{F rSub { size 8{ ital "agl"} } =F rSub { size 8{"max"} } \[ { {1} over {2} } "cos" \( θ rSub { size 8{ ital "ae"} } - ω rSub { size 8{e} } t \) + { {1} over {2} } "cos" \( θ rSub { size 8{ ital "ae"} } +ω rSub { size 8{e} } t \) \] } {} (4.20)

F agl + = F max cos ( θ ae ω e t ) size 12{F rSub { size 8{ ital "agl"} } rSup { size 8{+{}} } =F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } - ω rSub { size 8{e} } t \) } {} (4.21)

F agl = 1 2 F max cos ( θ ae + ω e t ) size 12{F rSub { size 8{ ital "agl"} } rSup { size 8{ - {}} } = { {1} over {2} } F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } +ω rSub { size 8{e} } t \) } {} (4.22)

  • F agl size 12{F rSub { size 8{ ital "agl"} } } {} travels in the + θ a size 12{+θ rSub { size 8{a} } } {} direction and F agl size 12{F rSub { size 8{ ital "agl"} } } {} travels in the θ a size 12{ - θ rSub { size 8{a} } } {} direction.
  • This decomposition is shown graphically in Fig. 4.19(b) and in a phasor representation in Fig. 4.19(c).

Figure 4.19 Single-phase-winding space-fundamental air-gap mmf: (a) mmf distribution of a

single-phase winding at various times; (b) total mmf F agl size 12{F rSub { size 8{ ital "agl"} } } {} decomposed into two traveling waves F and F + size 12{F rSup { size 8{+{}} } } {} ; (c) phasor decomposition of F.

§4.5.2 MMF Wave of a Polyphase Winding

  • We are to study the mmf distribution of three-phase windings such as those found on the stator of three-phase induction and synchronous machines.

In a three-phase machine, the windings of the individual phases are displaced from each other by 120 electrical degrees in space around the air-gap circumference as shown in Fig.4.20 in which the concentrated full-pitch coils may be considered to represent distributed windings.

  • Under balanced three-phase conditions, the excitation currents (Fig. 4.20) are

i a = I m cos ω e t size 12{i rSub { size 8{a} } =I rSub { size 8{m} } "cos"ω rSub { size 8{e} } t} {} (4.23)

i b = I m cos ( ω e t 120 o ) size 12{i rSub { size 8{b} } =I rSub { size 8{m} } "cos" \( ω rSub { size 8{e} } t - "120" rSup { size 8{o} } \) } {} (4.24)

i c = I m cos ( ω e t + 120 o ) size 12{i rSub { size 8{c} } =I rSub { size 8{m} } "cos" \( ω rSub { size 8{e} } t+"120" rSup { size 8{o} } \) } {} (4.25)

Figure 4.20 Simplified two-pole three-phase stator winding.

Figure 4.21 Instantaneous phase currents under balanced three-phase conditions.

  • The mmf of phase a has been shown to be

F a1 = F a1 + + F a1 size 12{F rSub { size 8{a1} } =F rSub { size 8{a1} } rSup { size 8{+{}} } +F rSub { size 8{a1} } rSup { size 8{ - {}} } } {} (4.26)

F a1 + = 1 2 F max cos ( θ ae ω e t ) size 12{F rSub { size 8{a1} } rSup { size 8{+{}} } = { {1} over {2} } F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } - ω rSub { size 8{e} } t \) } {} (4.27)

F a1 = 1 2 F max cos ( θ ae + ω e t ) size 12{F rSub { size 8{a1} } rSup { size 8{ - {}} } = { {1} over {2} } F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } +ω rSub { size 8{e} } t \) } {} (4.28)

F max = 4 π ( k w N ph poles ) I m size 12{F rSub { size 8{"max"} } = { {4} over {π} } \( { {k rSub { size 8{w} } N rSub { size 8{ ital "ph"} } } over { ital "poles"} } \) I rSub { size 8{m} } } {} (4.29)

  • Similarly, for phases b and c

F b1 = F b1 + + F b1 size 12{F rSub { size 8{b1} } =F rSub { size 8{b1} } rSup { size 8{+{}} } +F rSub { size 8{b1} } rSup { size 8{ - {}} } } {} (4.30)

F b1 + = 1 2 F max cos ( θ ae ω e t ) size 12{F rSub { size 8{b1} } rSup { size 8{+{}} } = { {1} over {2} } F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } - ω rSub { size 8{e} } t \) } {} (4.31)

F b1 = 1 2 F max cos ( θ ae + ω e t + 120 o ) size 12{F rSub { size 8{b1} } rSup { size 8{ - {}} } = { {1} over {2} } F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } +ω rSub { size 8{e} } t+"120" rSup { size 8{o} } \) } {} (4.32)

F c1 = F c1 + + F c1 size 12{F rSub { size 8{c1} } =F rSub { size 8{c1} } rSup { size 8{+{}} } +F rSub { size 8{c1} } rSup { size 8{ - {}} } } {} (4.33)

F c1 + = 1 2 F max cos ( θ ae ω e t ) size 12{F rSub { size 8{c1} } rSup { size 8{+{}} } = { {1} over {2} } F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } - ω rSub { size 8{e} } t \) } {} (4.34)

F c1 = F max cos ( θ ae + ω e t 120 o ) size 12{F rSub { size 8{c1} } rSup { size 8{ - {}} } =F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } +ω rSub { size 8{e} } t - "120" rSup { size 8{o} } \) } {} (4.35)

  • The total mmf is the sum

F ( θ ae , t ) = F a1 + F b1 + F c1 size 12{F \( θ rSub { size 8{ ital "ae"} } ,t \) =F rSub { size 8{a1} } +F rSub { size 8{b1} } +F rSub { size 8{c1} } } {} (4.36)

It can be performed in terms of the positive- and negative- traveling waves.

F ( θ ae , t ) = F a1 + F b1 + F c1 = 1 2 F max [ cos ( θ ae + ω e t ) + cos ( θ ae + ω e t 120 o ) + cos ( θ ae + ω e t + 120 o ) ] = 0 alignl { stack { size 12{F rSup { size 8{ - {}} } \( θ rSub { size 8{ ital "ae"} } ,t \) =F rSub { size 8{a1} } rSup { size 8{ - {}} } +F rSub { size 8{b1} } rSup { size 8{ - {}} } +F rSub { size 8{c1} } rSup { size 8{ - {}} } } {} #" "= { {1} over {2} } F rSub { size 8{"max"} } \[ "cos" \( θ rSub { size 8{ ital "ae"} } +ω rSub { size 8{e} } t \) +"cos" \( θ rSub { size 8{ ital "ae"} } +ω rSub { size 8{e} } t - "120" rSup { size 8{o} } \) +"cos" \( θ rSub { size 8{ ital "ae"} } +ω rSub { size 8{e} } t+"120" rSup { size 8{o} } \) \] {} #" "=0 {} } } {}

F + ( θ ae , t ) = F a1 + + F b1 + + F c1 + = 3 2 F max cos ( θ ae ω e t ) alignl { stack { size 12{F rSup { size 8{+{}} } \( θ rSub { size 8{ ital "ae"} } ,t \) =F rSub { size 8{a1} } rSup { size 8{+{}} } +F rSub { size 8{b1} } rSup { size 8{+{}} } +F rSub { size 8{c1} } rSup { size 8{+{}} } } {} #" "= { {3} over {2} } F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } - ω rSub { size 8{e} } t \) {} } } {} (4.37)

  • The result of displacing the three windings by 120 o size 12{"120" rSup { size 8{o} } } {} in space phase and displacing the winding currents by 120 o size 12{"120" rSup { size 8{o} } } {} in time phase is a single positive-traveling mmf wave

F ( θ ae , t ) = 3 2 F max cos ( θ ae ω e t ) 3 2 F max cos ( ( poles 2 ) θ a ω e t ) alignl { stack { size 12{F \( θ rSub { size 8{ ital "ae"} } ,t \) = { {3} over {2} } F rSub { size 8{"max"} } "cos" \( θ rSub { size 8{ ital "ae"} } - ω rSub { size 8{e} } t \) } {} #= { {3} over {2} } F rSub { size 8{"max"} } "cos" \( \( { { ital "poles"} over {2} } \) θ rSub { size 8{a} } - ω rSub { size 8{e} } t \) {} } } {} (4.38)

  • Under balanced three-phase conditions, the three-phase winding produces an air-gap mmf wave which rotates at synchronous angular velocity ω s size 12{ω rSub { size 8{s} } } {} (rad/sec)

ω s = ( 2 poles ) ω e size 12{ω rSub { size 8{s} } = \( { {2} over { ital "poles"} } \) ω rSub { size 8{e} } } {} (4.39)

ω c size 12{ω rSub { size 8{c} } } {} : angular velocity of the applied electrical excitation (rad/sec)

  • : synchronous speed

f e = ω e / ( ) size 12{f rSub { size 8{e} } =ω rSub { size 8{e} } / \( 2π \) } {} : applied electrical frequency

n s = ( 120 poles ) f e r /min size 12{n rSub { size 8{s} } = \( { {"120"} over { ital "poles"} } \) f rSub { size 8{e} } " "r"/min"} {} (4.40)

  • A polyphase winding exicted by balanced polyphase currents produces a rotating mmf wave.
  • It is the interaction of this magnetic flux wave with that of the rotor which produces torque.
  • Constant torque is produced when rotor-produced magnetic flux rotates in synchronism with that of the stator.

§4.5.3 Graphical Analysis of Polyphase MMF

  • For balanced three-phase currents, the production of a rotating mmf can also be shown graphically.
  • Refer to Fig. 4.22.
  • As time passes, the resultant mmf wave retains its sinusoidal form and amplitude but rotates progressively around the air gap.
  • The net result is an mmf wave of constant amplitude rotating at uniform angular velocity.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Intergrated library system management. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10801/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intergrated library system management' conversation and receive update notifications?

Ask