<< Chapter < Page | Chapter >> Page > |
The vast majority of nitrogen on Earth is held in rocks and plays a minor role in the nitrogen cycle. The second largest pool of nitrogen is in the atmosphere. Most atmospheric nitrogen is in the form of N 2 gas, and most organisms are unable to access it. This is significant because nitrogen is an essential component of all cells—for instance, in protein, RNA, and DNA—and nitrogen availability frequently limits the productivity of crops and natural vegetation. Atmospheric nitrogen is made available to plants in two ways. Certain microbes are capable of biological nitrogen fixation , whereby N 2 is converted into ammonium, a form of nitrogen that plants can access. Many of these microbes have formed symbiotic relationships with plants—they live within the plant tissue and use carbon supplied by the plant as an energy source, and in return they share ammonia produced by nitrogen fixation. Well-known examples of plants that do this are peas and beans. Some microbes that live in the soil are also capable of nitrogen fixation, but many are found in a zone very close to roots, where significant carbon sources are released from the plant. Together these biological nitrogen fixing processes on land, coupled with others that take place at sea, generate an annual flux out of the atmosphere of approximately 200 MtN (megatonnnes of nitrogen or 200,000,000 tonnes of nitrogen). Lightning causes nitrogen and oxygen in the atmosphere to react and produce nitrous oxides that fall or are washed out of the atmosphere by rain and into the soil, but the is flux is much smaller (30 MtN per year at most) than biological nitrogen fixation.
While the inputs of nitrogen from the atmosphere to the biosphere are important, the majority (90%) of nitrogen used by plants for growth each year comes from ammonification of organic material. Organic material is matter that comes from once-living organisms. Ammonification (or mineralization) is the release of ammonia by decomposers (bacteria and fungi) when they break down the complex nitrogen compounds in organic material. Plants are able to absorb ( assimilate ) this ammonia, as well as nitrates, which are made available by bacterial nitrification . The cycle of nitrogen incorporation in growing plant tissues and nitrogen release by bacteria from decomposing plant tissues is the dominant feature of the nitrogen cycle and occurs very efficiently. Nitrogen can be lost from the system in three main ways. First, denitrifying bacteria convert nitrates to nitrous oxide or N 2 gases that are released back to the atmosphere. Denitrification occurs when the bacteria grow under oxygen-depleted conditions, and is therefore favored by wet and waterlogged soils. Denitrification rates almost match biological nitrogen fixation rates, with wetlands making the greatest contribution. Second, nitrates are washed out of soil in drainage water ( leaching ) and into rivers and the ocean. Third, nitrogen is also cycled back into the atmosphere when organic material burns.
Notification Switch
Would you like to follow the 'Bio 351 university of texas' conversation and receive update notifications?