<< Chapter < Page Chapter >> Page >

Alcohol fermentation

Another familiar fermentation process is alcohol fermentation ( [link] ), which produces ethanol, an alcohol. The alcohol fermentation reaction is the following:

Graphic showing the alcohol fermentation reaction in an equation.
The reaction resulting in alcohol fermentation is shown.

In the first reaction, a carboxyl group is removed from pyruvic acid, releasing carbon dioxide as a gas. The loss of carbon dioxide reduces the molecule by one carbon atom, making acetaldehyde. The second reaction removes an electron from NADH, forming NAD + and producing ethanol from the acetaldehyde, which accepts the electron. The fermentation of pyruvic acid by yeast produces the ethanol found in alcoholic beverages ( [link] ). If the carbon dioxide produced by the reaction is not vented from the fermentation chamber, for example in beer and sparkling wines, it remains dissolved in the medium until the pressure is released. Ethanol above 12 percent is toxic to yeast, so natural levels of alcohol in wine occur at a maximum of 12 percent.

This photo shows large, silver-colored, cylindrical fermentation tanks.
Fermentation of grape juice to make wine produces CO 2 as a byproduct. Fermentation tanks have valves so that pressure inside the tanks can be released.

Concept in action

Visit this site to see anaerobic cellular respiration in action.

Other fermentation methods occur in bacteria. Many bacteria are facultatively aerobes. This means that they can switch between aerobic and anaerobic growth depending on the availability of oxygen. Certain bacteria, like Clostridia bacteria, are obligate anaerobes. Obligate anaerobes live and grow in the absence of molecular oxygen. Oxygen is a poison to these microorganisms and kills them upon exposure. It should be noted that many forms of fermentation, an exception is lactic acid fermentation, produce gas, usually CO 2 and acids, such as lactate or acetate. The production of particular types of gas is used as an indicator of the fermentation of specific carbohydrates, which plays a role in the laboratory identification of the bacteria. The various methods of fermentation are used by different organisms to ensure an adequate supply of NAD + for the sixth step in glycolysis. Without these pathways, that step would not occur, and no ATP would be harvested from the breakdown of glucose.

Alcohol dehydrogenase in yeast serves the same role as lactate dehydrogenase in mammals. This role is:

  1. To remove excess pyruvate.
  2. To regenerate NAD+from electron transport.
  3. To regenerate NAD+for glycolysis.
  4. To reduce the amount of oxygen needed for growth.

c

Here are some additional links to help you study

Section summary

If NADH cannot be metabolized through aerobic respiration, another electron acceptor is used. Most organisms will use some form of fermentation to accomplish the regeneration of NAD + , ensuring the continuation of glycolysis. The regeneration of NAD + in fermentation is not accompanied by ATP production; therefore, the potential for NADH to produce ATP using an electron transport chain is not utilized.

Art connections

[link] Tremetol, a metabolic poison found in white snake root plant, prevents the metabolism of lactate. When cows eat this plant, Tremetol is concentrated in the milk. Humans who consume the milk become ill. Symptoms of this disease, which include vomiting, abdominal pain, and tremors, become worse after exercise. Why do you think this is the case?

[link] The illness is caused by lactic acid build-up. Lactic acid levels rise after exercise, making the symptoms worse. Milk sickness is rare today, but was common in the Midwestern United States in the early 1800s.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ucd bis2a intro to biology v1.2. OpenStax CNX. Sep 22, 2015 Download for free at https://legacy.cnx.org/content/col11890/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ucd bis2a intro to biology v1.2' conversation and receive update notifications?

Ask