<< Chapter < Page Chapter >> Page >

Introduction

In the previous study, we observed and applied the Second Law of Thermodynamics to predict when a process will be spontaneous. For example, the melting of solid water at a temperature above 0 ˚C at 1 atm pressure is a spontaneous process, and thermodynamics predicts this very accurately. However, over the course of several Concept Development Studies, we focused on processes at equilibrium, rather than processes occurring spontaneously. These include phase equilibrium, solubility equilibrium, reaction equilibrium, and acid-base equilibrium. Interestingly, we can use our understanding of spontaneous processes to make predictions about equilibrium processes too.

To begin, we need to be clear about what we mean by a “spontaneous process” versus an “equilibrium process.” At equilibrium, the macroscopic properties we observe (temperature, pressure, partial pressures, concentrations, volume) do not change. We have developed a model to describe equilibrium based on the idea of dynamic equilibrium, meaning that at equilibrium, there are forward and reverse reactions occurring at the molecular level at the same rate. However, this is not what we mean by “spontaneous process,” since the forward and reverse reactions exactly offset one another in a dynamic equilibrium. By contrast, in a spontaneous process, we observe macroscopic changes: partial pressures of reactants or products are increasing, concentrations are increasing or decreasing, the temperature or volume is changing, etc. This means that the forward and reverse reactions at the molecular level do not offset one another, and real macroscopic changes occur.

As we have discovered, during a spontaneous process the entropy of the universe increases. When a process comes to equilibrium, there are no spontaneous processes, so a reaction at equilibrium does not increase the entropy of the universe. We can combine these two ideas to say that, as a process spontaneously approaches equilibrium, the entropy of the universe continually increases until equilibrium is reached, at which point the process no longer increases the entropy of the universe. This gives us a way to predict the conditions under which a process will reach equilibrium. We will develop this approach in this Concept Development Study.

We will have to be careful in applying the Second Law of Thermodynamics in calculations. So far, we have only observed and tabulated values of the “absolute entropy,” S˚, at standard pressures and concentrations. We can use these to make predictions about processes at standard pressure and concentrations. But we know that phase transitions and reactions almost always come to equilibrium at partial pressures not equal to 1 atm and concentrations not equal to 1 M. Therefore, we must be careful when we interpret calculations of ∆S using S˚ values. And to understand the conditions at equilibrium, we must determine how to calculate S values for non-standard conditions. Only then will we be able to apply the Second Law of Thermodynamics at equilibrium conditions.

Questions & Answers

what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask