<< Chapter < Page Chapter >> Page >

Eye color in Drosophila was one of the first X-linked traits to be identified. Thomas Hunt Morgan mapped this trait to the X chromosome in 1910. Like humans, Drosophila males have an XY chromosome pair, and females are XX. In flies, the wild-type eye color is red (X W ) and it is dominant to white eye color (X w ) ( [link] ). Because of the location of the eye-color gene, reciprocal crosses do not produce the same offspring ratios. Males are said to be hemizygous    , because they have only one allele for any X-linked characteristic. Hemizygosity makes the descriptions of dominance and recessiveness irrelevant for XY males. Drosophila males lack a second allele copy on the Y chromosome; that is, their genotype can only be X W Y or X w Y. In contrast, females have two allele copies of this gene and can be X W X W , X W X w , or X w X w .

Photo shows six fruit flies, each with a different eye color.
In Drosophila , several genes determine eye color. The genes for white and vermilion eye colors are located on the X chromosome. Others are located on the autosomes. Clockwise from top left are brown, cinnabar, sepia, vermilion, white, and red. Red eye color is wild-type and is dominant to white eye color.

In an X-linked cross, the genotypes of F 1 and F 2 offspring depend on whether the recessive trait was expressed by the male or the female in the P 1 generation. With regard to Drosophila eye color, when the P 1 male expresses the white-eye phenotype and the female is homozygous red-eyed, all members of the F 1 generation exhibit red eyes ( [link] ). The F 1 females are heterozygous (X W X w ), and the males are all X W Y, having received their X chromosome from the homozygous dominant P 1 female and their Y chromosome from the P 1 male. A subsequent cross between the X W X w female and the X W Y male would produce only red-eyed females (with X W X W or X W X w genotypes) and both red- and white-eyed males (with X W Y or X w Y genotypes). Now, consider a cross between a homozygous white-eyed female and a male with red eyes. The F 1 generation would exhibit only heterozygous red-eyed females (X W X w ) and only white-eyed males (X w Y). Half of the F 2 females would be red-eyed (X W X w ) and half would be white-eyed (X w X w ). Similarly, half of the F 2 males would be red-eyed (X W Y) and half would be white-eyed (X w Y).

Art connection

This illustration shows a Punnett square analysis of fruit fly eye color, which is a sex-linked trait. A red-eyed male fruit fly with the genotype X^{w}Y is crossed with a white-eyed female fruit fly with the genotype X^{w}X^{w}. All of the female offspring acquire a dominant W allele from the father and a recessive w allele from the mother, and are therefore heterozygous dominant with red eye color. All of the male offspring acquire a recessive w allele from the mother and a Y chromosome from the father and are therefore hemizygous recessive with white eye color.
Punnett square analysis is used to determine the ratio of offspring from a cross between a red-eyed male fruit fly and a white-eyed female fruit fly.

What ratio of offspring would result from a cross between a white-eyed male and a female that is heterozygous for red eye color?

Discoveries in fruit fly genetics can be applied to human genetics. When a female parent is homozygous for a recessive X-linked trait, she will pass the trait on to 100 percent of her offspring. Her male offspring are, therefore, destined to express the trait, as they will inherit their father's Y chromosome. In humans, the alleles for certain conditions (some forms of color blindness, hemophilia, and muscular dystrophy) are X-linked. Females who are heterozygous for these diseases are said to be carriers and may not exhibit any phenotypic effects. These females will pass the disease to half of their sons and will pass carrier status to half of their daughters; therefore, recessive X-linked traits appear more frequently in males than females.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Genetics and evolution. OpenStax CNX. Aug 07, 2014 Download for free at https://legacy.cnx.org/content/col11595/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Genetics and evolution' conversation and receive update notifications?

Ask