<< Chapter < Page Chapter >> Page >

One extension of parametric estimation theory necessary for its application to array processing is the estimation of signalparameters. We assume that we observe a signal s l , whose characteristics are known save a few parameters , in the presence of noise. Signal parameters, such as amplitude, time origin, and frequencyif the signal is sinusoidal, must be determined in some way. In many cases of interest, we would find it difficult to justify aparticular form for the unknown parameters' a priori density. Because of such uncertainties, the minimum mean-squared error and maximum a posteriori estimators cannot be used in many cases. The minimum mean-squared error linear estimator does not require this density, but it is most fruitfully used when the unknownparameter appears in the problem in a linear fashion (such as signal amplitude as we shall see).

Linear minimum mean-squared error estimator

The only parameter that is linearly related to a signal is the amplitude. Consider, therefore, the problem where theobservations at an array's output are modeled as

l l 0 L 1 r l s l n l
The signal waveform s l is known and its energy normalized to be unity ( l s l 2 1 ). The linear estimate of the signal's amplitude is assumed to be of the form l h l r l , where h l minimizes the mean-squared error. To use the Orthogonality Principle expressed by this equation , an inner product must be defined for scalars. Little choice avails itself butmultiplication as the inner product of two scalars. The Orthogonality Principle states that the estimation error mustbe orthogonal to all linear transformations defining the kind of estimator being sought. h l 0 L 1 h LIN l r l k 0 L 1 h k r k 0 Manipulating this equation to make the universality constraint more transparent results in h k 0 L 1 h k l 0 L 1 h LIN l r l r k 0 Written in this way, the expected value must be 0 for each value of k to satisfy the constraint. Thus, the quantity h LIN of the estimator of the signal's amplitude must satisfy k l 0 L 1 h LIN l r l r k r k Assuming that the signal's amplitude has zero mean and is statistically independent of the zero-mean noise, the expectedvalues in this equation are given by r l r k 2 s l s k K n k l r k 2 s k where K n k l is the covariance function of the noise. The equation that must be solved for the unit-sample response h LIN of the optimal linear MMSE estimator of signal amplitude becomes
k l 0 L 1 h LIN l K n k l 2 s k 1 l 0 L 1 h LIN l s l
This equation is easily solved once phrased in matrix notation. Letting K n denote the covariance matrix of the noise, s the signal vector, and h LIN the vector of coefficients, this equation becomes K n h LIN 2 1 s h LIN s The matched filter for colored-noise problems consisted of the dot product between the vector of observations and K n s (see the detector result ). Assume that the solution to the linear estimation problem is proportional to the detectiontheoretical one: h LIN c K n s , where c is a scalar constant. This proposed solution satisfies the equation; the MMSE estimate ofsignal amplitude corresponds to applying a matched filter to the observations with
h LIN 2 1 2 s K n s K n s
The mean-squared estimation error of signal amplitude is given by 2 2 l 0 L 1 h LIN l r l Substituting the vector expression for h LIN yields the result that the mean-squared estimation error equals the proportionality constant c defined earlier. 2 2 1 2 s K n s

Thus, the linear filter that produces the optimal estimate of signal amplitude is equivalent to the matched filter used todetect the signal's presence. We have found this situation to occur when estimates of unknown parameters are needed to solvethe detection problem (see Detection in the Presence of Uncertainties ). If we had not assumed the noise to be Gaussian, however, thisdetection-theoretic result would be different, but the estimator would be unchanged. To repeat, this invarianceoccurs because the linear MMSE estimator requires no assumptions on the noise's amplitude characteristics.

Let the noise be white so that its covariance matrix is proportional to the identity matrix ( K n n 2 I ). The weighting factor in the minimum mean-squared error linear estimator is proportional to thesignal waveform. h LIN l 2 n 2 2 s l LIN 2 n 2 2 l 0 L 1 s l r l This proportionality constant depends only on the relative variances of the noise and the parameter. If the noise variance can be considered to be much smaller than the a priori variance of the amplitude, then this constant does not depend on these variances and equals unity. Otherwise, thevariances must be known.

We find the mean-squared estimation error to be 2 2 1 2 n 2 This error is significantly reduced from its nominal value 2 only when the variance of the noise is small compared with the a priori variance of the amplitude. Otherwise, this admittedly optimum amplitude estimateperforms poorly, and we might as well as have ignored the data and "guessed" that the amplitude was zero

In other words, the problem is difficult in this case.
.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Estimation theory. OpenStax CNX. May 14, 2006 Download for free at http://cnx.org/content/col10352/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Estimation theory' conversation and receive update notifications?

Ask