<< Chapter < Page Chapter >> Page >
a = Δ v t

where Δ v is the change in velocity, i.e. Δ v = v f - v i . Thus we have

a = v f - v i t v f = v i + a t

Derivation of [link]

We have seen that displacement can be calculated from the area under a velocity vs. time graph. For uniformly accelerated motion the most complicated velocity vs. time graph we can have is a straight line. Look at the graph below - it represents an object with a starting velocity of v i , accelerating to a final velocity v f over a total time t .

To calculate the final displacement we must calculate the area under the graph - this is just the area of the rectangle added to the area of the triangle. This portion of the graph has been shaded for clarity.

Area = 1 2 b × h = 1 2 t × ( v f - v i ) = 1 2 v f t - 1 2 v i t
Area = × b = t × v i = v i t
Displacement = Area + Area Δ x = v i t + 1 2 v f t - 1 2 v i t Δ x = ( v i + v f ) 2 t

Derivation of [link]

This equation is simply derived by eliminating the final velocity v f in [link] . Remembering from [link] that

v f = v i + a t

then [link] becomes

Δ x = v i + v i + a t 2 t = 2 v i t + a t 2 2 Δ x = v i t + 1 2 a t 2

Derivation of [link]

This equation is just derived by eliminating the time variable in the above equation. From [link] we know

t = v f - v i a

Substituting this into [link] gives

Δ x = v i ( v f - v i a ) + 1 2 a ( v f - v i a ) 2 = v i v f a - v i 2 a + 1 2 a ( v f 2 - 2 v i v f + v i 2 a 2 ) = v i v f a - v i 2 a + v f 2 2 a - v i v f a + v i 2 2 a 2 a Δ x = - 2 v i 2 + v f 2 + v i 2 v f 2 = v i 2 + 2 a Δ x

This gives us the final velocity in terms of the initial velocity, acceleration and displacement and is independent of the time variable.

A racing car is travelling north. It accelerates uniformly covering a distance of 725 m in 10 s. If it has an initial velocity of 10 m · s - 1 , find its acceleration.

  1. We are given:

    v i = 10 m · s - 1 Δ x = 725 m t = 10 s a = ?
  2. If you struggle to find the correct equation, find the quantity that is not given and then look for an equation that has this quantity in it.

    We can use equation [link]

    Δ x = v i t + 1 2 a t 2
  3. Δ x = v i t + 1 2 a t 2 725 m = ( 10 m · s - 1 × 10 s ) + 1 2 a × ( 10 s ) 2 725 m - 100 m = ( 50 s 2 ) a a = 12 , 5 m · s - 2
  4. The racing car is accelerating at 12,5 m · s - 2 north.

A motorcycle, travelling east, starts from rest, moves in a straight line with a constant acceleration and covers a distance of 64 m in 4 s. Calculate

  1. its acceleration
  2. its final velocity
  3. at what time the motorcycle had covered half the total distance
  4. what distance the motorcycle had covered in half the total time.
  1. We are given:

    v i = 0 m · s - 1 ( because the object starts from rest. ) Δ x = 64 m t = 4 s a = ? v f = ? t = ? at half the distance Δ x = 32 m . Δ x = ? at half the time t = 2 s .

    All quantities are in SI units.

  2. We can use [link]

    Δ x = v i t + 1 2 a t 2
  3. Δ x = v i t + 1 2 a t 2 64 m = ( 0 m · s - 1 × 4 s ) + 1 2 a × ( 4 s ) 2 64 m = ( 8 s 2 ) a a = 8 m · s - 2 east
  4. We can use [link] - remember we now also know the acceleration of the object.

    v f = v i + a t
  5. v f = v i + a t v f = 0 m · s - 1 + ( 8 m · s - 2 ) ( 4 s ) = 32 m · s - 1 east
  6. We can use [link] :

    Δ x = v i + 1 2 a t 2 32 m = ( 0 m · s - 1 ) t + 1 2 ( 8 m · s - 2 ) ( t ) 2 32 m = 0 + ( 4 m · s - 2 ) t 2 8 s 2 = t 2 t = 2 , 83 s
  7. Half the time is 2 s, thus we have v i , a and t - all in the correct units. We can use [link] to get the distance:

    Δ x = v i t + 1 2 a t 2 = ( 0 ) ( 2 ) + 1 2 ( 8 ) ( 2 ) 2 = 16 m east
    1. The acceleration is 8 m · s - 2 east
    2. The velocity is 32 m · s - 1 east
    3. The time at half the distance is 2,83 s
    4. The distance at half the time is 16 m east

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics - grade 10 [caps 2011]. OpenStax CNX. Jun 14, 2011 Download for free at http://cnx.org/content/col11298/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics - grade 10 [caps 2011]' conversation and receive update notifications?

Ask