<< Chapter < Page Chapter >> Page >

This Chapter complements the mathematical perspective of Algorithms with a more focused view of the low level details that are relevant to efficient implementation on SIMD microprocessors. These techniques arewidely practised by today's state of the art implementations, and form the basis for more advanced techniques presented in later chapters.

Simple programs

Fast Fourier transforms (FFTs) can be succinctly expressed as microprocessor algorithms that are depth first recursive. Forexample, the Cooley-Tukey FFT divides a size N transform into two size N /2 transforms, which in turn are divided into size N /4 transforms. This recursion continues until the base case of two size 1transforms is reached, where the two smaller sub-transforms are then combined into a size 2 sub-transform, and then two completed size 2 transforms arecombined into a size 4 transform, and so on, until the size N transform is complete.

Computing the FFT with such a depth first traversal has an important advantage in terms of memory locality: at any point during the traversal, the two completedsub-transforms that compose a larger sub-transform will still be in the closest level of the memory hierarchy in which they fit (see, i.a., [link] and [link] ). In contrast, a breadth first traversal of a sufficiently large transform couldforce data out of cache during every pass (ibid.).

Many implementations of the FFT require a bit-reversal permutation of either the input or the output data, but a depth first recursive algorithm implicitlyperforms the permutation during recursion. The bit-reversal permutation is an expensive computation, and despite being the subject of hundreds of researchpapers over the years, it can easily account for a large fraction of the FFTs runtime – more so for the conjugate-pair algorithm with the rotatedbit-reversal permutation. Such permutations will be encountered in later sections, but for the mean time it should be noted that the algorithms inthis chapter do not require bit-reversal permutations – the input and output are in natural order.

IF  N = 1     RETURN  x 0   ELSE      E k 2 = 0 , , N / 2 - 1 DITFFT 2 N / 2 ( x 2 n 2 )      O k 2 = 0 , , N / 2 - 1 DITFFT 2 N / 2 ( x 2 n 2 + 1 )     FOR  k = 0  to  N / 2 - 1        X k E k + ω N k O k        X k + N / 2 E k - ω N k O k     END FOR     RETURN  X k   ENDIF
DITFFT2 N ( x n )

Radix-2

A recursive depth first implementation of the Cooley-Tukey radix-2 decimation-in-time (DIT) FFT is described with pseudocode in [link] , and an implementation coded in C with only the most basic optimization – avoiding multiply operations where ω N 0 is unity in the first iteration of the loop – is included in Appendix 1 . Even when compiled with a state-of-the-art auto-vectorizing compiler, Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 12.1.0.038 Build 20110811. the code achieves poor performance on modern microprocessors, and is useful only asa baseline reference. Benchmark methods contains a full account of the benchmark methods.

Performance of simple radix-2 FFT from a historical perspective, for size 64 real FFT
Implementation Machine Runtime
Danielson-Lanczos, 1942 [link] Human 140 minutes
Cooley-Tukey, 1965 [link] IBM 7094 10.5 ms
Listing 1, Appendix 1 , 2011 Macbook Air 4,2 440 μ s

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Computing the fast fourier transform on simd microprocessors. OpenStax CNX. Jul 15, 2012 Download for free at http://cnx.org/content/col11438/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computing the fast fourier transform on simd microprocessors' conversation and receive update notifications?

Ask