<< Chapter < Page Chapter >> Page >

The second problem posed in the introduction is basically the solution of simultaneous linear equations [link] , [link] , [link] which is fundamental to linear algebra [link] , [link] , [link] and very important in diverse areas of applications in mathematics, numericalanalysis, physical and social sciences, engineering, and business. Since a system of linear equations may be over or under determined in a varietyof ways, or may be consistent but ill conditioned, a comprehensive theory turns out to be more complicated than it first appears. Indeed, there isa considerable literature on the subject of generalized inverses or pseudo-inverses . The careful statement and formulation of the general problem seems to have started with Moore [link] and Penrose [link] , [link] and developed by many others. Because the generalized solution of simultaneous equationsis often defined in terms of minimization of an equation error, the techniques are useful in a wide variety of approximation andoptimization problems [link] , [link] as well as signal processing.

The ideas are presented here in terms of finite dimensions using matrices. Many of the ideas extend to infinite dimensions using Banachand Hilbert spaces [link] , [link] , [link] in functional analysis.

The problem

Given an M by N real matrix A and an M by 1 vector b , find the N by 1 vector x when

a 11 a 12 a 13 a 1 N a 21 a 22 a 23 a 31 a 32 a 33 a M 1 a M N x 1 x 2 x 3 x N = b 1 b 2 b 3 b M

or, using matrix notation,

A x = b

If b does not lie in the range space of A (the space spanned by the columns of A ), there is no exact solution to [link] , therefore, an approximation problem can be posed by minimizing an equation error defined by

ε = A x - b .

A generalized solution (or an optimal approximate solution) to [link] is usually considered to be an x that minimizes some norm of ε . If that problem does not have a unique solution, further conditions, such as also minimizing the norm of x , are imposed. The l 2 or root-mean-squared error or Euclidean norm is ε T * ε and minimization sometimes has an analytical solution. Minimization of other norms such as l (Chebyshev) or l 1 require iterative solutions. The general l p norm is defined as q where

q = | | x | | p = ( n | x ( n ) | p ) 1 / p

for 1 < p < and a “pseudonorm" (not convex) for 0 < p < 1 . These can sometimes be evaluated using IRLS (iterative reweighted least squares) algorithms [link] , [link] , [link] , [link] , [link] .

If there is a non-zero solution of the homogeneous equation

A x = 0 ,

then [link] has infinitely many generalized solutions in the sense that any particular solution of [link] plus an arbitrary scalar times any non-zero solution of [link] will have the same error in [link] and, therefore, is also a generalized solution. The number of families of solutions is the dimensionof the null space of A .

This is analogous to the classical solution of linear, constant coefficient differential equationswhere the total solution consists of a particular solution plus arbitrary constants times the solutions to the homogeneous equation. The constants are determined from the initial(or other) conditions of the solution to the differential equation.

Ten cases to consider

Examination of the basic problem shows there are ten cases [link] listed in Figure 1 to be considered.These depend on the shape of the M by N real matrix A , the rank r of A , and whether b is in the span of the columns of A .

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Basic vector space methods in signal and systems theory. OpenStax CNX. Dec 19, 2012 Download for free at http://cnx.org/content/col10636/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Basic vector space methods in signal and systems theory' conversation and receive update notifications?

Ask