<< Chapter < Page Chapter >> Page >
this module discusses the effects of filtering of noise

We will see the effects on the power spectrum when noise is passed through a filter.

Filtered output:

If h ( t ) size 12{h \( t \) } {} is the impulse response, filtered output n o ( t ) size 12{n rSub { size 8{o} } \( t \) } {} obtained by convolution.

n o t = n i τ h t τ = t n i τ h t τ size 12{n rSub { size 8{o} } left (t right )= Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {n rSub { size 8{i} } left (τright )h left (t -τright )dτ} = Int cSub { size 8{ - infinity } } cSup { size 8{t} } {n rSub { size 8{i} } left (τright )h left (t -τright )dτ} } {}
  • Approximate continuous time by discrete interval.
n o t = lim Δτ 0 k = k = n i kΔτ h t kΔτ Δτ size 12{n rSub { size 8{o} } left (t right )= {"lim"} cSub { size 8{Δτrightarrow 0} } Sum cSub { size 8{k= - infinity } } cSup { size 8{k= { size 6{t} } wideslash { size 6{Δτ} } } } {n rSub { size 8{i} } left (kΔτright )h left (t - kΔτright )Δτ} } {}
  • In the interval impulse response is deterministic and known, but n i size 12{n rSub { size 8{i} } } {} depends on sample chosen,
  • For white Gaussian noise n i size 12{n rSub { size 8{i} } } {} in interval k is different from and independent of that in interval l.
  • Thus output at any time t 0 size 12{t rSub { size 8{0} } } {} is a linear superposition of independent Gaussian variables: hence it is Gaussian.
  • If we split filter H ( f ) size 12{H \( f \) } {} into H 1 ( f ) size 12{H rSub { size 8{1} } \( f \) } {} and H 2 ( f ) size 12{H rSub { size 8{2} } \( f \) } {} , output of H 1 ( f ) size 12{H rSub { size 8{1} } \( f \) } {} is Gaussian but NOT white (due to filtering)
  • Hence output n o size 12{n rSub { size 8{o} } } {} of H 2 ( f ) size 12{H rSub { size 8{2} } \( f \) } {} is also non-white.
  • output n o ' size 12{n rSub { size 8{o} } rSup { size 8{'} } } {} of H 1 ( f ) size 12{H rSub { size 8{1} } \( f \) } {} is non-white, thus n o ' size 12{n rSub { size 8{o} } rSup { size 8{'} } } {} in intervals k and l are dependent, but despite of this n o size 12{n rSub { size 8{o} } } {} is Gaussian.
  • Hence superposition of non-white dependent Gaussian variables also gives Gaussian output.

 Spectral components:

  • Let spectral component k be
n k t = a k cos 2πkΔ ft + b k sin 2πkΔ ft = c k cos 2πkΔ ft + θ k size 12{n rSub { size 8{k} } left (t right )=a rSub { size 8{k} } "cos"2πkΔital "ft"+b rSub { size 8{k} } "sin"2πkΔital "ft"=c rSub { size 8{k} } "cos" left (2πkΔital "ft"+θrSub { size 8{k} } right )} {}
  • Then though coefficients are random over ensemble, they are deterministic for a specific case and depend on the particular sample chosen.
  • Hence spectral component is stationary but not ergodic.
  • Its normalized power is
P k = n k t 2 ¯ = a k 2 ¯ cos 2 2πkΔ ft + b k 2 ¯ sin 2 2πkΔ ft + 2a k b k ¯ cos 2πkΔ ft sin 2πkΔ ft size 12{P rSub { size 8{k} } = {overline { left [n rSub { size 8{k} } left (t right ) right ] rSup { size 8{2} } }} = {overline {a rSub { size 8{k} } rSup { size 8{2} } }} "cos" rSup { size 8{2} } 2πkΔital "ft"+ {overline {b rSub { size 8{k} } rSup { size 8{2} } }} "sin" rSup { size 8{2} } 2πkΔital "ft"+ {overline {2a rSub { size 8{k} } b rSub { size 8{k} } }} "cos"2πkΔital "ft""sin"2πkΔital "ft"} {}
  • As n k ( t ) size 12{n rSub { size 8{k} } \( t \) } {} is stationary, t can be any time. Choose t as t 1 size 12{t rSub { size 8{1} } } {} when cosine is 1, sine is 0. Then
P k = a k 2 ¯ size 12{P rSub { size 8{k} } = {overline {a rSub { size 8{k} } rSup { size 8{2} } }} } {}

and similarly

P k = b k 2 ¯ size 12{P rSub { size 8{k} } = {overline {b rSub { size 8{k} } rSup { size 8{2} } }} } {}
P k = 2G n ( kΔf ) Δf = 2G n ( kΔf ) Δf = a k 2 ¯ = b k 2 ¯ = a k 2 ¯ + b k 2 ¯ 2 = c k 2 ¯ 2 size 12{P rSub { size 8{k} } =2G rSub { size 8{n} } \( kΔf \)Δf= - 2G rSub { size 8{n} } \( kΔf \)Δf= {overline {a rSub { size 8{k} } rSup { size 8{2} } }} = {overline {b rSub { size 8{k} } rSup { size 8{2} } }} = { { {overline {a rSub { size 8{k} } rSup { size 8{2} } }} + {overline {b rSub { size 8{k} } rSup { size 8{2} } }} } over {2} } = { { {overline {c rSub { size 8{k} } rSup { size 8{2} } }} } over {2} } } {}

Since

a k 2 ¯ = b k 2 ¯ size 12{ {overline {a rSub { size 8{k} } rSup { size 8{2} } }} = {overline {b rSub { size 8{k} } rSup { size 8{2} } }} } {}
  • Then p k size 12{p rSub { size 8{k} } } {} can be written as showing a constant term and a sin-cos time dependent term.
P k = a k 2 ¯ cos 2 2πkΔ ft + sin 2 2πkΔ ft + 2a k b k ¯ cos 2πkΔ ft sin 2πkΔ ft size 12{P rSub { size 8{k} } = {overline {a rSub { size 8{k} } rSup { size 8{2} } }} left ("cos" rSup { size 8{2} } 2πkΔital "ft"+"sin" rSup { size 8{2} } 2πkΔital "ft" right )+ {overline {2a rSub { size 8{k} } b rSub { size 8{k} } }} "cos"2πkΔital "ft""sin"2πkΔital "ft"} {}

thus

P k = a k 2 ¯ + 2a k b k ¯ cos 2πkΔ ft sin 2πkΔf size 12{P rSub { size 8{k} } = {overline {a rSub { size 8{k} } rSup { size 8{2} } }} + {overline {2a rSub { size 8{k} } b rSub { size 8{k} } }} "cos"2πkΔital "ft""sin"2πkΔf} {}
  • But p k size 12{p rSub { size 8{k} } } {} is stationary and independent of time, so
a k b k ¯ = 0 size 12{ {overline {a rSub { size 8{k} } b rSub { size 8{k} } }} =0} {}

Hence the coefficients are seen to be uncorrelated.

  • Also at t 1 size 12{t rSub { size 8{1} } } {} , we have n k ( t 1 ) = a k size 12{n rSub { size 8{k} } \( t rSub { size 8{1} } \) =a rSub { size 8{k} } } {} . But n k size 12{n rSub { size 8{k} } } {} is Gaussian as it can be considered output of a narrowband filter whose input is Gaussian.

Thus a k size 12{a rSub { size 8{k} } } {} and b k size 12{b rSub { size 8{k} } } {} are Gaussian.

  • Also a k size 12{a rSub { size 8{k} } } {} is output of filter in a non zero frequency interval k, it is not DC, thus mean value of a k = 0 size 12{a rSub { size 8{k} } =0} {} . Hence coefficients are Zero-mean Gaussian.
  • Taking product of two samples n k ( t ) size 12{n rSub { size 8{k} } \( t \) } {} and n l ( t ) size 12{n rSub { size 8{l} } \( t \) } {} where
n k t = a k cos 2πkΔ ft + b k sin 2πkΔ ft size 12{n rSub { size 8{k} } left (t right )=a rSub { size 8{k} } "cos"2πkΔital "ft"+b rSub { size 8{k} } "sin"2πkΔital "ft"} {}
n l t = a l cos 2πlΔ ft + b l sin 2πlΔ ft size 12{n rSub { size 8{l} } left (t right )=a rSub { size 8{l} } "cos"2πlΔital "ft"+b rSub { size 8{l} } "sin"2πlΔital "ft"} {}

The ensemble averages of the result must be independent of time as each component is stationary, hence

a k a l ¯ = a k b l ¯ = b k a l ¯ = b k b l ¯ = 0 size 12{ {overline {a rSub { size 8{k} } a rSub { size 8{l} } }} = {overline {a rSub { size 8{k} } b rSub { size 8{l} } }} = {overline {b rSub { size 8{k} } a rSub { size 8{l} } }} = {overline {b rSub { size 8{k} } b rSub { size 8{l} } }} =0} {}
  • Hence coefficients at a given frequency are uncorrelated, and also coefficients at different frequencies are uncorrelated.

Summary of noise characteristics:

Random, Gaussian, Ergodic, Linear superposition of random spectral components with coefficients which are Gaussian, zero-mean, with variances related to power spectral density and uncorrelated with each other and with other coefficients at different frequencies.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Noise in communications. OpenStax CNX. Jul 07, 2008 Download for free at http://cnx.org/content/col10549/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Noise in communications' conversation and receive update notifications?

Ask