<< Chapter < Page Chapter >> Page >
History and background of face recognition and its relation to eigenfaces.

The intuitive way to do face recognition is to look at the major features of the face and compare them to the same features on other faces. The first attempts to do this began in the 1960’s with a semi-automated system. Marks were made on photographs to locate the major features; it used features such as eyes, ears, noses, and mouths. Then distances and ratios were computed from these marks to a common reference point and compared to reference data. In the early 1970’s Goldstein, Harmon and Lesk created a system of 21 subjective markers such as hair color and lip thickness. This proved even harder to automate due to the subjective nature of many of the measurements still made completely by hand.

A more automated approach to recognition began with Fisher and Elschlagerb just a few years after the Goldstein paper. This approach measured the features above using templates of features of different pieces of the face and them mapped them all onto a global template. After continued research it was found that these features do not contain enough unique data to represent an adult face.

Another approach is the Connectionist approach, which seeks to classify the human face using a combination of both range of gestures and a set of identifying markers. This is usually implemented using 2-dimensional pattern recognition and neural net principles. Most of the time this approach requires a huge number of training faces to achieve decent accuracy; for that reason it has yet to be implemented on a large scale.

The first fully automated system to be developed utilized very general pattern recognition. It compared faces to a generic face model of expected features and created a series of patters for an image relative to this model. This approach is mainly statistical and relies on histograms and the grayscale value.

Kirby and Sirovich pioneered the eigenface approach in 1988 at Brown University. Since then, many people have built and expanded on the basic ideas described in their original paper. We received the idea for our approach from a paper by Turk and Pentland based on similar research conducted at MIT.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Face recognition using eigenfaces. OpenStax CNX. Dec 21, 2004 Download for free at http://cnx.org/content/col10254/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Face recognition using eigenfaces' conversation and receive update notifications?

Ask