<< Chapter < Page Chapter >> Page >

Introduction

In this chapter, you will learn about the short cuts to writing 2 × 2 × 2 × 2 . This is known as writing a number in exponential notation .

Definition

Exponential notation is a short way of writing the same number multiplied by itself many times. For example, instead of 5 × 5 × 5 , we write 5 3 to show that the number 5 is multiplied by itself 3 times and we say “5 to the power of 3”. Likewise 5 2 is 5 × 5 and 3 5 is 3 × 3 × 3 × 3 × 3 . We will now have a closer look at writing numbers using exponential notation.

Exponential Notation

Exponential notation means a number written like

a n

where n is an integer and a can be any real number. a is called the base and n is called the exponent or index .

The n th power of a is defined as:

a n = a × a × × a ( n times )

with a multiplied by itself n times.

We can also define what it means if we have a negative exponent - n . Then,

a - n = 1 a × a × × a ( n times )
Exponentials

If n is an even integer, then a n will always be positive for any non-zero real number a . For example, although - 2 is negative, ( - 2 ) 2 = - 2 × - 2 = 4 is positive and so is ( - 2 ) - 2 = 1 - 2 × - 2 = 1 4 .

Khan academy video on exponents - 1

Khan academy video on exponents-2

Laws of exponents

There are several laws we can use to make working with exponential numbers easier. Some of these laws might have been seen in earlier grades, but we will list all the laws here for easy reference and explain each law in detail, so that you can understand them and not only remember them.

a 0 = 1 a m × a n = a m + n a - n = 1 a n a m ÷ a n = a m - n ( a b ) n = a n b n ( a m ) n = a m n

Exponential law 1: a 0 = 1

Our definition of exponential notation shows that

a 0 = 1 , ( a 0 )

To convince yourself of why this is true, use the fourth exponential law above (division of exponents) and consider what happens when m = n .

For example, x 0 = 1 and ( 1 000 000 ) 0 = 1 .

Application using exponential law 1: a 0 = 1 , ( a 0 )

  1. 16 0
  2. 16 a 0
  3. ( 16 + a ) 0
  4. ( - 16 ) 0
  5. - 16 0

Exponential law 2: a m × a n = a m + n

Khan academy video on exponents - 3

Our definition of exponential notation shows that

a m × a n = 1 × a × ... × a ( m times ) × 1 × a × ... × a ( n times ) = 1 × a × ... × a ( m + n times ) = a m + n

For example,

2 7 × 2 3 = ( 2 × 2 × 2 × 2 × 2 × 2 × 2 ) × ( 2 × 2 × 2 ) = 2 7 + 3 = 2 10

Interesting fact

This simple law is the reason why exponentials were originally invented. In the days before calculators, all multiplication had to be done by hand with a pencil and a pad of paper. Multiplication takes a very long time to do and is very tedious. Adding numbers however, is very easy and quick to do. If you look at what this law is saying you will realise that it means that adding the exponents of two exponential numbers (of the same base) is the same as multiplying the two numbers together. This meant that for certain numbers, there was no need to actually multiply the numbers together in order to find out what their multiple was. This saved mathematicians a lot of time, which they could use to do something more productive.

Application using exponential law 2: a m × a n = a m + n

  1. x 2 · x 5
  2. 2 3 · 2 4 [Take note that the base (2) stays the same.]
  3. 3 × 3 2 a × 3 2

Exponential law 3: a - n = 1 a n , a 0

Our definition of exponential notation for a negative exponent shows that

Questions & Answers

I'm interested in biological psychology and cognitive psychology
Tanya Reply
what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 maths [caps]. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11306/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 maths [caps]' conversation and receive update notifications?

Ask