<< Chapter < Page Chapter >> Page >

Introduction to discrete structures

What is discrete mathematics?

Discrete mathematics is mathematics that deals with discrete objects. Discrete objects are those which are separated from (not connected to/distinct from) each other. Integers (aka whole numbers), rational numbers (ones that can be expressed as the quotient of two integers), automobiles, houses, people etc. are all discrete objects. On the other hand real numbers which include irrational as well as rational numbers are not discrete. As you know between any two different real numbers there is another real number different from either of them. So they are packed without any gaps and can not be separated from their immediate neighbors. In that sense they are not discrete. In this course we will be concerned with objects such as integers, propositions, sets, relations and functions, which are all discrete. We are going to learn concepts associated with them, their properties, and relationships among them among others.

Why discrete mathematics?

Let us first see why we want to be interested in the formal/theoretical approaches in computer science.

Some of the major reasons that we adopt formal approaches are 1) we can handle infinity or large quantity and indefiniteness with them, and 2) results from formal approaches are reusable. As an example, let us consider a simple problem of investment. Suppose that we invest $1,000 every year with expected return of 10% a year. How much are we going to have after 3 years, 5 years, or 10 years? The most naive way to find that out would be the brute force calculation. Let us see what happens to $1,000 invested at the beginning of each year for three years. First let us consider the $1,000 invested at the beginning of the first year. After one year it produces a return of $100. Thus at the beginning of the second year, $1,100, which is equal to $1,000 * (1 + 0.1), is invested. This $1,100 produces $110 at the end of the second year. Thus at the beginning of the third year we have $1,210, which is equal to $1,000 * (1 + 0.1)*(1 + 0.1), or $1,000 * (1 + 0.1)2. After the third year this gives us $1,000 * (1 + 0.1)3. Similarly we can see that the $1,000 invested at the beginning of the second year produces $1,000 * (1 + 0.1)2 at the end of the third year, and the $1,000 invested at the beginning of the third year becomes $1,000 * (1 + 0.1). Thus the total principal and return after three years is $1,000 * (1 + 0.1) + $1,000 * (1 + 0.1)2 + $1,000 * (1 + 0.1)3, which is equal to $3,641.

One can similarly calculate the principal and return for 5 years and for 10 years. It is, however, a long tedious calculation even with calculators. Further, what if you want to know the principal and return for some different returns than 10%, or different periods of time such as 15 years? You would have to do all these calculations all over again. We can avoid these tedious calculations considerably by noting the similarities in these problems and solving them in a more general way. Since all these problems ask for the result of investing a certain amount every year for certain number of years with a certain expected annual return, we use variables, say A, R and n, to represent the principal newly invested every year, the return ratio, and the number of years invested, respectively. With these symbols, the principal and return after n years, denoted by S, can be expressed as S = A(1 + R) + A(1 + R)2 + ... + A(1 + R)n. As well known, this S can be put into a more compact form by first computing S - (1 + R)S as

Questions & Answers

the definition for anatomy and physiology
Watta Reply
what is microbiology
Agebe Reply
What is a cell
Odelana Reply
what is cell
Mohammed
how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete structures. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10768/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete structures' conversation and receive update notifications?

Ask